【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值.

【答案】
(1)

解:把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得

,

解得

故該拋物線的解析式為:y=﹣x2﹣2x+3.


(2)

解:由(1)知,該拋物線的解析式為y=﹣x2﹣2x+3,則易得B(1,0).

∵SAOP=4SBOC,

×3×|﹣x2﹣2x+3|=4× ×1×3.

整理,得(x+1)2=0或x2+2x﹣7=0,

解得x=﹣1或x=﹣1±2

則符合條件的點(diǎn)P的坐標(biāo)為:(﹣1,4)或(﹣1+2 ,﹣4)或(﹣1﹣2 ,﹣4)


(3)

解:設(shè)直線AC的解析式為y=kx+t,將A(﹣3,0),C(0,3)代入,

解得

即直線AC的解析式為y=x+3.

設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),(﹣3≤x≤0),則D點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),

QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+ 2+ ,

∴當(dāng)x=﹣ 時(shí),QD有最大值


【解析】(1)把點(diǎn)A、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)的方程組,通過解方程組求得系數(shù)的值;(2)設(shè)P點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),根據(jù)SAOP=4SBOC列出關(guān)于x的方程,解方程求出x的值,進(jìn)而得到點(diǎn)P的坐標(biāo);(3)先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+3,再設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),則D點(diǎn)坐標(biāo)為(x,x2+2x﹣3),然后用含x的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質(zhì)即可求出線段QD長(zhǎng)度的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是直角三角形,延長(zhǎng)AB到點(diǎn)E,使BE=BC,在BC上取一點(diǎn)F,使BF=AB,連接EF,△ABC旋轉(zhuǎn)后能與△FBE重合,請(qǐng)回答:

(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)的最小角度是
(2)AC與EF的位置關(guān)系如何,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.
解一元二次不等式:x2﹣5x>0.
解:設(shè)x2﹣5x=0,解得:x1=0,x2=5,則拋物線y=x2﹣5x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫出二次函數(shù)y=x2﹣5x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0,或x>5時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集為:x<0或x>5.
通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解題過程中,滲透了下列數(shù)學(xué)思想中的 . (只填序號(hào))
①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想
(2)一元二次不等式x2﹣5x<0的解集為
(3)用類似的方法寫出一元二次不等式的解集:x2﹣2x﹣3>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.

(1)△ACD是直角三角形嗎?為什么?

(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c過A,B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;
(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為△ACG內(nèi)一點(diǎn),連接PA,PC,PG,分別以AP,AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:①全等三角形的面積相等;②最小角等于50°的三角形是銳角三角形;③等腰△ABC中,D是底邊BC上一點(diǎn),E是一腰AC上的一點(diǎn),若∠BAD=60°AD=AE,則∠EDC=30°;④將多項(xiàng)式因式分解,其結(jié)果為-y(2x+1)(x-3).其中正確命題的序號(hào)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一拋物線與x軸的交點(diǎn)是A(﹣2,0)、B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案