【題目】如圖,已知反比例函數(shù)的圖像與一正比例函數(shù)的圖像相交于點(diǎn),點(diǎn)的坐標(biāo)是.

1)求正比例函數(shù)的解析式;

2)若正比例函數(shù)的圖像與反比例函數(shù)的圖像在第一象限內(nèi)交于點(diǎn),過(guò)點(diǎn)軸的垂線,為垂足,且交直線于點(diǎn),過(guò)點(diǎn)軸的垂線,為垂足,求梯形的面積;

3)連結(jié),求的面積.

【答案】1)正比例函數(shù)的解析式為;(2;(3

【解析】

1)根據(jù)自變量的值,可得相應(yīng)的函數(shù)值,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量的值求得相應(yīng)的函數(shù)值,即點(diǎn)P的坐標(biāo),通過(guò)聯(lián)立兩個(gè)解析式得方程組求交點(diǎn)B的坐標(biāo),求得線段BD,CD的長(zhǎng),根據(jù)梯形面積公式求解;(3)根據(jù)反比例函數(shù)的性質(zhì)可得,利用割補(bǔ)法求得三角形的面積.

1)設(shè)正比例函數(shù)的解析式為:,

代入,

,

A1,4

代入得,得

∴正比例函數(shù)的解析式為:

2)把代入,則,

,

聯(lián)立與反比例函數(shù)得,

解得:,

,,

3)∵A,B在雙曲線上,且ACx軸,BDx軸,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《九章算術(shù)》“勾股”章中有這樣一個(gè)問(wèn)題:

“今有邑方不知大小,各中開(kāi)門(mén),出北門(mén)二十步有木,出南門(mén)十回步,折而西行一千七百七十五步見(jiàn)木.問(wèn)邑方幾何.”用今天的話說(shuō),大意是:如圖,DEFG是一座正方形小城,北門(mén)H位于DG的中點(diǎn),南門(mén)K位于EF的中點(diǎn),出北門(mén)20步到A處有一樹(shù)木,出南門(mén)14步到C,再向西行1775步到B處,正好看到A處的樹(shù)木(即點(diǎn)D在直線AB上),求小城的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-2(k+1)xk2+2k=0.

(1)求證:k取任何實(shí)數(shù)值,方程總有不相等的實(shí)數(shù)根;

(2)若等腰△ABC的周長(zhǎng)為14,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仙降是瑞安重要的制鞋基地,其生產(chǎn)的鞋子暢銷世界各地,某制鞋企業(yè)欲將件產(chǎn)品運(yùn)往三地銷售,運(yùn)往地的費(fèi)用為18/件,運(yùn)往地的費(fèi)用為20/件,運(yùn)往地的費(fèi)用為17/件,要求運(yùn)往地的件數(shù)與運(yùn)往地的件數(shù)相同. 設(shè)安排件產(chǎn)品運(yùn)往地.

1)若①運(yùn)往地件數(shù)為 件(用含的代數(shù)式表示);②若總運(yùn)費(fèi)不超過(guò)1850元,則運(yùn)往地至少有多少件?

2)若總運(yùn)費(fèi)為1900元,則的最大值為 .(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:順次連接矩形A1B1C1D1四邊的中點(diǎn)得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn)得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形A2019B2019C2019D2019的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)MN;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),經(jīng)過(guò)CCD⊥AB于點(diǎn)D,CF⊙O的切線,過(guò)點(diǎn)AAE⊥CFE,連接AC.

(1)求證:AE=AD.

(2)AE=3,CD=4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBC,點(diǎn)ECD上一點(diǎn),AE平分∠BAD,BF平分∠ABC,延長(zhǎng)BEAD的延長(zhǎng)線于點(diǎn)F

1)求證:△ABE≌△AFE;

2)若AD2,BC6,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)x、y軸分別交于AB兩點(diǎn),x、y軸交于CD兩點(diǎn).

1)求A、B、CD的坐標(biāo)(用含k、m的代數(shù)式表示);

2)若,求的值;

3)在(2)的前提下,若的面積為27,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案