【題目】直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動(dòng)點(diǎn)P在BD上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在CA上以每秒3個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.PQ交線段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時(shí),求t的值;
②過點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過點(diǎn)P作PN⊥BD交線段AB或AD于點(diǎn)N,當(dāng)PN=EM時(shí),求t的值.
【答案】(1)點(diǎn)A(2,0),點(diǎn)C(6,0),點(diǎn)D(4,3),(2)①秒;(2)t=(1﹣)秒或t=秒.
【解析】(1)先由直線解析式求得點(diǎn)A、B坐標(biāo),將點(diǎn)A坐標(biāo)代入拋物線解析式求得m的值,從而得出答案;
(2)①由(1)知BD=AC、BD//OC,根據(jù)AB=AD=證四邊形ABPQ是平行四邊形得AQ=BP,即2t=4-3t,解之即可;
②分點(diǎn)N在AB上和點(diǎn)N在AD上兩種情況分別求解.
(1)在中,令得,令得,
∴點(diǎn)、點(diǎn),
將點(diǎn)代入拋物線解析式,得:,
解得:,
所以拋物線解析式為,
∵y,
∴點(diǎn),對(duì)稱軸為,
∴點(diǎn)C坐標(biāo)為;
(2)如圖1,
由(1)知,
根據(jù),得:,
①∵、,
∴,
∴,
∵,
∴,
∵、,
∴,
∴,
∴,
∴,
∴四邊形ABPQ是平行四邊形,
∴,即,
解得:,
即當(dāng)時(shí),秒;
②Ⅰ當(dāng)點(diǎn)N在AB上時(shí),,即,
連接NE,延長(zhǎng)PN交x軸于點(diǎn)F,延長(zhǎng)ME交x軸于點(diǎn)H,
∵、,,,
∴,,、,,
∴,
∵點(diǎn)N在直線上,
∴點(diǎn)N的坐標(biāo)為,
∴,
∵,
∴∽,
∴,
∴,
∵、,
∴直線AD解析式為,
∵點(diǎn)E在直線上,
∴點(diǎn)E的坐標(biāo)為,
∵,
∴,
解得:舍或;
Ⅱ當(dāng)點(diǎn)N在AD上時(shí),,即,
∵,
∴點(diǎn)E、N重合,此時(shí),
∴,
∴,
解得:,
綜上所述,當(dāng)時(shí),秒或秒
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個(gè)長(zhǎng)寬高分別為6,4,3的長(zhǎng)方體木塊,一只螞蟻要從長(zhǎng)方體木塊的一個(gè)頂點(diǎn)A處,沿著長(zhǎng)方體表面到長(zhǎng)方體上和A處相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1) 當(dāng)t=1時(shí),求△ACP的面積
(2) t為何值時(shí),線段AP是∠CAB的平分線?
(3) 請(qǐng)利用備用圖2繼續(xù)探索:當(dāng)t為何值時(shí),△ACP是以AC為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平價(jià)商場(chǎng)經(jīng)銷的甲、乙兩種商品,甲種商品每件售價(jià)98元,利潤(rùn)率為40%;乙種商品每件進(jìn)價(jià)80元,售價(jià)128元.
(1)甲種商品每件進(jìn)價(jià)為 元,每件乙種商品利潤(rùn)率為 .
(2)若該商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共50件,恰好總進(jìn)價(jià)為3800元,求購(gòu)進(jìn)甲、乙兩種商品各多少件?
(3)在“元且“期間,該商場(chǎng)只對(duì)乙種商品進(jìn)行如下的優(yōu)惠促銷活動(dòng):按下表優(yōu)惠條件,
打折前一次性購(gòu)物總金額 | 優(yōu)惠措施 |
少于等于480元 | 不優(yōu)惠 |
超過480元,但不超過680元 | 其中480元不打折,超過480元的部分給予6折優(yōu)惠 |
超過680元 | 按購(gòu)物總額給予7.5折優(yōu)惠 |
若小華一次性購(gòu)買乙種商品實(shí)際付款576元,求小華在該商場(chǎng)購(gòu)買乙種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC。
(1)如圖①,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖②,若點(diǎn)O在△ABC的內(nèi)部,上題的結(jié)論還成立嗎?為什么?
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫圖表示。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度數(shù);
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC.
(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)指出線段DC和線段BE的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將四張邊長(zhǎng)各不相同的正方形紙片按如圖方式放入矩形內(nèi)(相鄰紙片之間互不重疊也無(wú)縫隙),未被四張正方形紙片覆蓋的部分用陰影表示.設(shè)右上角與左下角陰影部分的周長(zhǎng)的差為.若知道的值,則不需測(cè)量就能知道周長(zhǎng)的正方形的標(biāo)號(hào)為( )
A.①B.②C.③D.④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com