精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,矩形ABCD中,AB5,BC3EAD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____

【答案】

【解析】

根據矩形的性質得到CD=AB=5AD=BC=3,∠D=C=90°,根據折疊得到BFAB5,EFEA,根據勾股定理求出CF,由此得到DF的長,再根據勾股定理即可求出AE.

∵矩形ABCD中,AB5,BC3

CD=AB=5,AD=BC=3,∠D=C=90°,

由折疊的性質可知,BFAB5,EFEA,

RtBCF中,CF4,

DFDCCF1

AEx,則EFx,DE3x,

RtDEF中,EF2DE2+DF2,即x2=(3x2+12

解得,x

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】拋物線b,c為常數)與x軸交于點,與y軸交于點A,點E為拋物線頂點。

(Ⅰ)當時,求點A,點E的坐標;

(Ⅱ)若頂點E在直線上,當點A位置最高時,求拋物線的解析式;

(Ⅲ)若,當滿足值最小時,求b的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.

其中正確結論的個數是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某企業(yè)承接了上海世博會的禮品盒制作業(yè)務,他們購得規(guī)格是170cm×40cm的標準板材作為原材料,每張標準板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖1所示,(單位:cm

1)列出方程(組),求出圖甲中ab的值.

2)若將30張標準板材用裁法一裁剪,4張標準板材用裁法二裁剪,再將得到的A型與B型板材做側面和底面,做成圖2的豎式與橫式兩種無蓋禮品盒.

①兩種裁法共產生A型板材   張,B型板材   張;

②做成的豎式和橫式兩種無蓋禮品盒總數最多是多少個?此時橫式無蓋禮品盒可以做多少個?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長;

2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y軸交于A點,過點A的直線與拋物線交于另一點B,過點BBCx軸,垂足為點C(3,0).

1)求直線AB的函數關系式;

2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點PPNx軸,交直線AB于點M,交拋物線于點N. 設點P移動的時間為t秒,MN的長度為s個單位,求st的函數關系式,并寫出t的取值范圍;

3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線軸交于點,與軸交于點,拋物線經過兩點并與軸的另一個交點為,且.

1)求拋物線的解析式;

2)點為直線上方對稱軸右側拋物線上一點,當的面積為時,求點的坐標;

3)在(2)的條件下,連接,作軸于,連接,點為線段上一點,點為線段上一點,滿足,過點軸于點,連接,當時,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1)已知矩形AOCD在平面直角坐標系xOy中,∠CAO60°OA2,B點的坐標為(20),動點M以每秒2個單位長度的速度沿ACB運動(M點不與點A、點B重合),設運動時間為t秒.

1)求經過B、C、D三點的拋物線解析式;

2)點P在(1)中的拋物線上,當MAC中點時,若PAM≌△PDM,求點P的坐標;

3)當點MCB上運動時,如圖(2)過點MMEAD,MFx軸,垂足分別為E、F,設矩形AEMFABC重疊部分面積為S,求St的函數關系式,并求出S的最大值;

4)如圖(3)點P在(1)中的拋物線上,QCA延長線上的一點,且P、Q兩點均在第三象限內,Q、A是位于直線BP同側的不同兩點,若點Px軸的距離為d,QPB的面積為2d,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校游戲節(jié)活動中,設計了一個有獎轉盤游戲,如圖,A轉盤被分成三個面積相等的扇形,B轉盤被分成四個面積相等的扇形,每一個扇形都標有相應的數字,先轉動A轉盤,記下指針所指區(qū)域內的數字,再轉動B轉盤,記下指針所指區(qū)域內的數字(當指針在邊界線上時,重新轉動轉盤,直到指針指向一個區(qū)域內為止)

1)請利用畫樹狀圖或列表的方法(只選其中一種),表示出轉轉盤可能出現的所有結果;

2)如果將兩次轉轉盤指針所指區(qū)域的數據相乘,乘積是無理數時獲得一等獎,那么獲得一等獎的概率是多少?

查看答案和解析>>

同步練習冊答案