【題目】如圖,△ABC中∠A=30°,E是AC邊上的點,先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點D,又將△BCD沿著BD翻折,C點恰好落在BE上,此時∠CDB=80°,則原三角形的∠B為 _____________.
【答案】75°
【解析】
在△ABC中,根據(jù)三角形內(nèi)角和定理,可求得∠B+∠C=150°;結(jié)合折疊的性質(zhì)和圖②③可知:∠B=3∠CBD,即可在△CBD中,得到另一個關(guān)于∠B、∠C度數(shù)的等量關(guān)系式,聯(lián)立兩式即可求得∠B的度數(shù).
在△ABC中,∠A=30°,則∠B+∠C=150°①;
根據(jù)折疊的性質(zhì)知:∠B=3∠CBD,∠BCD=∠C;
在△CBD中,則有:∠CBD+∠BCD=180°-80°,即:
∠B+∠C=100°②;
①-②,得:
∠B=50°,
解得∠B=75°.
故答案為:75°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B是線段AD上一動點,沿A→D→A以2cm/s的速度往返運動1次,C是線段BD的中點,AD=10cm,設(shè)點B運動時間為t秒(0≤t≤10).
(1)當t=2時,①AB= cm.②求線段CD的長度.
(2)①點B沿點A→D運動時,AB= cm;
②點B沿點D→A運動時,AB= cm.(用含t的代數(shù)式表示AB的長)
(3)在運動過程中,若AB中點為E,則EC的長是否變化,若不變,求出EC的長;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點O,點O又是正方形A1B1C1O的一個頂點,而且這兩個正方形的邊長相等.無論正方形A1B1C1O繞點O怎樣轉(zhuǎn)動,兩個正方形重疊部分的面積,總等于一個正方形面積的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.
(1)甲、乙兩種款型的T恤衫各購進多少件?
(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把同樣大小的黑色棋子擺放在正多邊形的邊上.第4個圖形需要________________個棋子按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是_______________個(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OD是∠AOB的平分線,OE是∠BOC的平分線.
(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度數(shù);
(2)若∠AOC=150°,求∠DOE的度數(shù);
(3)你發(fā)現(xiàn)∠DOE與∠AOC有什么等量關(guān)系?給出結(jié)論并說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com