【題目】(-2)100比(-2)99大 ( )
A. 2 B. -2 C. 299 D. 3×299
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0, ),點A坐標(biāo)為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點F為線段AC上一動點,過點F作FE⊥x軸,FG⊥y軸,垂足分別為點E,G,當(dāng)四邊形OEFG為正方形時,求出點F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(-1,3)關(guān)于y軸對稱點的坐標(biāo)是()
A. (1,3)B. (-1,-3)C. (1,-3)D. (-3,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在△中,點為的中點,求證: <小明提供了他研究這個問題的思路:從點為的中點出發(fā),可以構(gòu)造以、為鄰邊的平行四邊形,結(jié)合平行四邊形的性質(zhì)以及三角形兩邊之和大于第三邊的性質(zhì)便可解決這個問題.請結(jié)合小明研究問題的思路,解決下列問題:
(1)完成上面問題的解答;
(2)如果在圖1中,∠=60°,延長到,使得,延長到,使得,連結(jié),如圖2. 請猜想線段與線段之間的數(shù)量關(guān)系.并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展課外體育活動,決定開設(shè)A:籃球、B:乒乓球、C:踢毽子、D:跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1) 樣本中最喜歡A項目的人數(shù)所占的百分比為 ;
(2) 請把條形統(tǒng)計圖補充完整;
(3) 若該校有學(xué)生1700人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若△ABC在第一象限,則△ABC關(guān)于x軸對稱的圖形所在的位置是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結(jié)論的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空:當(dāng)t為_________s時,四邊形ACFE是菱形;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com