【題目】如圖,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的頂點EABC的斜邊AB的中點重合.將DEF繞點E旋轉,旋轉過程中,線段AC與線段EF相交于點Q,射線ED與射線BC相交于點P.

(1)求證:AEQ∽△BPE;

(2)求證:PE平分∠BPQ;

(3)AQ=2,AE=,求PQ的長.

【答案】(1)證明見解析;(2)證明見解析;(3)5

【解析】

(1)求出A=B=DEF=45和AEQ=BPE ,即可證明相似.

(2)證明AEQ∽△EPQ,推出EPQ=BPE即可解答.

(3) 過點E作EHBP于點H, 根據(jù)條件求出AEQ∽△BPE,推出PE,再利用相似解答.

解:(1)證明:ABC和DEF都是等腰直角三角形,

∴∠A=B=DEF=45,

PEB+AEQ=PEB+EPB=180-45=135

∴∠AEQ=BPE

∴△AEQ∽△BPE;

(2)∵△AEQ∽△BPE,∴∠AEQ=BPE,,

而AE=BE,,…

∵∠A=DEF=45,

∴△AEQ∽△EPQ,

∴∠AEQ=EPQ,∴∠EPQ=BPE,

即PE平分BPQ;

(3)過點E作EHBP于點H,AQ=2,AE=

AE=BE=,ACB=90,AC=BC,由勾股定理易得AC=BC=6,

∵∠B=45,BE=,易得EH=BH=3

∵△AEQ∽△BPE,,

PH=BP-BH=9-3=6,

∵△AEQ∽△EPQ∽△BPE,

,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AEBC,垂足為E,CE=AB,點FCE的中點,點G在線段CD上,聯(lián)結DF,交AG于點M,交EG于點N,且∠DFC=EGC

1)求證:CG=DG

2)求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,弦于點;點延長線上一點,,

1)求證:的切線;

2)取的中點,連接,若的半徑為2,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解決下列問題:

1)兩個班共有女生多少人?

2)將頻數(shù)分布直方圖補充完整;

3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船在A處測得燈塔P在船的北偏東30°方向,輪船沿著北偏東60°方向航行16km后到達B處,這時燈塔P在船的北偏西75°方向.則燈塔PB之間的距離等于___________km(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)的圖象上.若點A的坐標為(-2,-2),則k的值為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019個邊長為l的正方形按如圖所示的方式排列,點和點是正方形的頂點,連接分別交正方形的邊于點,四邊形的面積是,四邊形的面積是,則_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學在藝術節(jié)期間向全校學生征集書畫作品,美術王老師從全校隨機抽取了四個班級記作A、B、C、D,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.

1)王老師抽查的四個班級共征集到作品多少件?

2)請把圖2的條形統(tǒng)計圖補充完整;

3)若全校參展作品中有五名同學獲得一等獎,其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學去參加學校總結表彰座談會,請用畫樹狀圖或列表的方法求恰好抽中一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,分別是的中點,分別在上, ,連結,則重疊部分六邊形的周長為________

查看答案和解析>>

同步練習冊答案