【題目】如圖,已知在平行四邊形ABCD中,AEBC,垂足為E,CE=AB,點(diǎn)FCE的中點(diǎn),點(diǎn)G在線段CD上,聯(lián)結(jié)DF,交AG于點(diǎn)M,交EG于點(diǎn)N,且∠DFC=EGC

1)求證:CG=DG

2)求證:

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)首先證明△ECG≌△DCF,則有CG=CF,因?yàn)?/span>CF=CE,則有CG=CD,則結(jié)論可證;

2)延長(zhǎng)AG、BC交于點(diǎn)H,首先證明△ADG≌△HCG,則有AG=HG,然后根據(jù)直角三角形斜邊中線有AG=HG=EG,進(jìn)而得出∠CDF=DAH,進(jìn)一步可證△ADG∽△DMG,則有,即,又因?yàn)?/span>CG=DG即可證明結(jié)論.

證明:(1)∵四邊形ABCD是平行四邊形,CE=AB,

AB=CD=EC

又∵∠DFC=EGC,∠FCD=GCE

∴△ECG≌△DCF,

CG=CF

∵點(diǎn)FCE的中點(diǎn),

CF=CE,

CG=CD

即:CG=DG

2)延長(zhǎng)AGBC交于點(diǎn)H

∵△ECG≌△DCF,

∴∠CEG=CDF,DG=CG

∵四邊形ABCD是平行四邊形,

ADBC,

∴∠DAH=H,∠ADC=DCH

∴△ADG≌△HCG,

AG=HG

AEBC,

∴∠AEC=90°,

AG=HG=EG

∴∠CEG=H,

∴∠CDF=DAH

又∵∠AGD=DGM

∴△ADG∽△DMG

,

CG=DG,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,的弦,,的延長(zhǎng)線相交于點(diǎn),過(guò)點(diǎn)的切線交于點(diǎn)

1)求證:;

2)若,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,直線軸相交于點(diǎn),與軸交于點(diǎn).拋物線經(jīng)過(guò)點(diǎn)和點(diǎn),并與軸相交于另一點(diǎn),對(duì)稱軸與軸相交于點(diǎn)

1)求拋物線的表達(dá)式;

2)求證:;

3)如果點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,y=ax2+bx2的圖象過(guò)A1,0),B(-2,0),與y軸交于點(diǎn)C

1)求拋物線關(guān)系式及頂點(diǎn)M的坐標(biāo);

2)若N為線段BM上一點(diǎn),過(guò)Nx軸的垂線,垂足為Q,當(dāng)N在線段BM上運(yùn)動(dòng)(N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為S,求St的關(guān)系式并求出S的最大值;

3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使PAC為直角三角形?若存在,請(qǐng)直接寫出所有符合條件P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)A,它的頂點(diǎn)為點(diǎn)B

1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______(m表示);

2)已知點(diǎn)M(-6,4),點(diǎn)N(3,4),若拋物線與線段MN恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,ABAC,求作ABC的外心O,以下是甲、乙兩同學(xué)的作法:

對(duì)于兩人的作法:

甲:如圖1,(1)作AB的垂直平分線DE;(2)作BC的垂直平分線FG;(3DE,FG交于點(diǎn)O,則點(diǎn)O即為所求.

乙:如圖2,(1)作∠ABC的平分線BD;(2)作BC的垂直平分線EF;(3BD,EF交于點(diǎn)O,則點(diǎn)O即為所求.

對(duì)于兩人的作法,正確的是(  )

A.兩人都對(duì)B.兩人都不對(duì)C.甲對(duì),乙不對(duì)D.甲不對(duì),乙對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)yaxaa為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)x0)的圖象相交于點(diǎn)Bt,1).

1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;

2)點(diǎn)P的坐標(biāo)為(m,m)(m0),過(guò)PPEx軸,交直線AB于點(diǎn)E,作PFy軸,交函數(shù)x0)的圖象于點(diǎn)F

①若m2,比較線段PEPF的大;

②直接寫出使PEPFm的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是甲、乙兩個(gè)圓柱形水槽,一個(gè)圓柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不計(jì)).將甲槽的水勻速注入乙槽的空玻璃杯中,甲水槽內(nèi)最高水位y(厘米)與注水時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖2線段DE所示,乙水槽(包括空玻璃杯)內(nèi)最高水位y(厘米)與注水時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖2折線OABC所示.記甲槽底面積為S1,乙槽底面積為S2,乙槽中玻璃杯底面積為S3,則S1S2S3的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的頂點(diǎn)EABC的斜邊AB的中點(diǎn)重合.將DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段AC與線段EF相交于點(diǎn)Q,射線ED與射線BC相交于點(diǎn)P.

(1)求證:AEQ∽△BPE;

(2)求證:PE平分∠BPQ;

(3)當(dāng)AQ=2,AE=,求PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案