【題目】某氣象臺發(fā)現(xiàn):在某段時間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時間有(
A.9天
B.11天
C.13天
D.22天

【答案】B
【解析】解:解法一:設有x天早晨下雨,這一段時間有y天, 根據(jù)題意得:
①+②得:2y=22
y=11
所以一共有11天,
解法二:設一共有x天,早晨下雨的有y天,晚上下雨的有z天,
根據(jù)題意得: ,
解得:
所以一共有11天,
故選B.

解法一:根據(jù)題意設有x天早晨下雨,這一段時間有y天;有9天下雨,即早上下雨或晚上下雨都可稱之為當天下雨,①總天數(shù)﹣早晨下雨=早晨晴天;②總天數(shù)﹣晚上下雨=晚上晴天;列方程組解出即可.
解法二:列三元一次方程組,解出即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算錯誤的是( )

A.

B. a2n(a2n)3a4n=a2

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成的,觀察規(guī)律并填空:

(1)表中第8行的最后一個數(shù)是______,它是自然數(shù)_____的平方,第8行共有_____個數(shù);

(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是___________,最后一個數(shù)是_____,第n行共有_________個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】判斷下列各式從等號左邊到右邊的變形,哪些是整式乘法,哪些是因式分解.

(1)a2-9b2=(a+3b)(a-3b);

(2)3y(x+2y)=3xy+6y2;

(3)(3a-1)2=9a2-6a+1;

(4)4y2+12y+9=(2y+3)2;

(5)x2+x=x2(1+);

(6)x2-y2+4y-4=(x-y)(x+y)+4(y-1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意有理數(shù)x、y定義運算如下:xy=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當a=1,b=2,c=3時,l3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,12=3,23=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)xd=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.

如:

因此,4,12,20這三個數(shù)都是神秘數(shù).

(1)282012這兩個數(shù)是不是神秘數(shù)?為什么?

(2)設兩個連續(xù)偶數(shù)為(其中為非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.

(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,AB=4,點P是BC邊上的動點,點P關于直線AB,AC的對稱點分別為M,N,則線段MN長的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為執(zhí)行中央“節(jié)能減排,美化環(huán)境,建設美麗新農(nóng)村”的國策,我市某村計劃建造A、B兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題.兩種型號沼氣池的占地面積、使用農(nóng)戶數(shù)及造價見下表:

已知可供建造沼氣池的占地面積不超過370m2,該村農(nóng)戶共有498.

(1)滿足條件的方案共有哪幾種?寫出解答過程.

(2)通過計算判斷,哪種建造方案最省錢?造價最低是多少萬元?

查看答案和解析>>

同步練習冊答案