【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是(  )

A.B.

C.D.

【答案】D

【解析】

當(dāng)反比例函數(shù)圖象分布在第一、三象限,則a0,然后根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系對A、B進(jìn)行判斷;當(dāng)反比例函數(shù)圖象分布在第二、四象限,則a0,然后根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系對C、D進(jìn)行判斷.

解:A、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)yaxa圖象經(jīng)過第一、三、四象限,所以A選項(xiàng)錯(cuò)誤;

B、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)yaxa圖象經(jīng)過第一、三、四象限,所以B選項(xiàng)錯(cuò)誤;

C、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)yaxa圖象經(jīng)過第一、二、四象限,所以C選項(xiàng)錯(cuò)誤;

D、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)yaxa圖象經(jīng)過第一、二、四象限,所以D選項(xiàng)正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在《幾何原本》中記載著這樣的題目:如果同一條線段被兩個(gè)分點(diǎn)先后分成相等和不相等的線段,以得到的各線段為邊作正方形,那么不相等的兩個(gè)正方形的面積之和等于原線段一半上的正方形與兩個(gè)分點(diǎn)之間一段上正方形的面積之和的兩倍.王老師帶領(lǐng)學(xué)生在閱讀的基礎(chǔ)上畫出的部分圖形如圖,已知線段,點(diǎn)為線段的中點(diǎn),點(diǎn)為線段上任意一點(diǎn)(不與重合),分別以為邊在的下方作正方形和正方形,以為邊在線段下方作正方形和正方形,則正方形與正方形的面積之和等于正方形和正方形面積之和的兩倍.

1)請你畫出正方形和正方形(不必尺規(guī)作圖);

2)設(shè),,根據(jù)題意寫出關(guān)于的等式并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式:

1個(gè)式子:

2個(gè)式子:

3個(gè)式子:

4個(gè)式子:

1)可猜想第7個(gè)等式為

2)探索規(guī)律,若字母表示自然數(shù),請寫出第個(gè)等式

3)試證明你寫出的等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(0,3),B(﹣4,﹣)兩點(diǎn).

(1)求b,c的值.

(2)二次函數(shù)y=﹣x2+bx+c的圖象與x軸是否有公共點(diǎn),求公共點(diǎn)的坐標(biāo);若沒有,請說明情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,DBC的中點(diǎn),PAB 邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線段DP的長為y,若表示yx的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為( )

A. 4 B. C. 12 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)DF、E、G都在ABC的邊上,EFAD,1=2,BAC=70°,求∠AGD的度數(shù).(請?jiān)谙旅娴目崭裉幪顚懤碛苫驍?shù)學(xué)式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))

   ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,

1)如圖,BD、CD∠ABC∠ACB的角平分線且相交于點(diǎn)D,若∠A =70°,試求∠BDC的度數(shù),并說明理由。

2)如圖,BD、CD分別是△ABC外角∠EBC、∠FCB的平分線且相交于點(diǎn)D,若∠A =x°,試用x表示∠BDC的度數(shù),并說明理由。

3)如圖③,BDCD分別是∠ABC和△ACB外角∠ACE的平分線且相交于點(diǎn)D,試找出∠A∠BDC之間的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段ACy軸,點(diǎn)B在第一象限,且AO平分∠BACABy軸與G,連OB、OC

1)判斷△AOG的形狀,并予以證明;

2)若點(diǎn)BC關(guān)于y軸對稱,求證:AOBO

查看答案和解析>>

同步練習(xí)冊答案