【題目】下圖表示購(gòu)買某種商品的個(gè)數(shù)與付款數(shù)之間的關(guān)系
(1)根據(jù)圖形完成下列表格
購(gòu)買商品個(gè)數(shù)(個(gè)) | 2 | 4 | 6 | 7 |
付款數(shù)(元) |
|
|
|
|
(2)請(qǐng)寫出表示付款數(shù)y(元)與購(gòu)買這種商品的個(gè)數(shù)x(個(gè))之間的關(guān)系式.
【答案】(1)4;8;12;14;(2)付款數(shù)y(元)與購(gòu)買這種商品的個(gè)數(shù)x(個(gè))之間的關(guān)系式為y=2x.
【解析】
根據(jù)折線統(tǒng)計(jì)圖即可寫得答案
根據(jù)題意可得關(guān)系式為y=kx,代入x與y的值即可解得k為2,及關(guān)系式為y=2x.
(1)當(dāng)購(gòu)買商品個(gè)數(shù)為2個(gè)時(shí),付款數(shù)為4元;
當(dāng)購(gòu)買商品個(gè)數(shù)為4個(gè)時(shí),付款數(shù)為8元;
當(dāng)購(gòu)買商品個(gè)數(shù)為6個(gè)時(shí),付款數(shù)為12元;
當(dāng)購(gòu)買商品個(gè)數(shù)為7個(gè)時(shí),付款數(shù)為14元;
故答案為:4;8;12;14;
(2)設(shè)付款數(shù)y(元)與購(gòu)買這種商品的個(gè)數(shù)x(個(gè))之間的關(guān)系式為y=kx,
根據(jù)題意得:4=2k,解得k=2,
∴付款數(shù)y(元)與購(gòu)買這種商品的個(gè)數(shù)x(個(gè))之間的關(guān)系式為y=2x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,DH⊥BC于H交BE于G.下列結(jié)論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的個(gè)數(shù)是( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的3倍,則稱這樣的方程為“立根方程”.以下關(guān)于立根方程的說(shuō)法:
①方程x2﹣4x﹣12=0是立根方程;
②若點(diǎn)(p,q)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程px2+4x+q=0是立根方程;
③若一元二次方程ax2+bx+c=0是立根方程,且相異兩點(diǎn)M(1+t,s),N(4﹣t,s)都在拋物線y=ax2+bx+c上,則方程ax2+bx+c=0的其中一個(gè)根是.
正確的是( 。
A. ①② B. ② C. ③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將周長(zhǎng)為8的△ABC沿BC方向平移1個(gè)單位長(zhǎng)度得到,則四邊形的周長(zhǎng)為( )
A. 8 B. 10 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;
(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);
(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)所有學(xué)生參加2011年初中畢業(yè)英語(yǔ)口語(yǔ)、聽(tīng)力自動(dòng)化考試,我們從中隨機(jī)抽取了部分學(xué)生的考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(說(shuō)明:A級(jí):25分~30分:B級(jí):20分~24分;C級(jí):15分~19分:D級(jí):15分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所占的百分比是__________;
(3)若該校九年級(jí)有850名學(xué)生,請(qǐng)你估計(jì)全年級(jí)A級(jí)和B級(jí)的學(xué)生人數(shù)共約為_(kāi)_________人。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com