【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求實(shí)數(shù)k的取值范圍;
(2)是否存在實(shí)數(shù)k使得x1x2﹣x12﹣x22≥0成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵原方程有兩個(gè)實(shí)數(shù)根,

∴[﹣(2k+1)]2﹣4(k2+2k)≥0,

∴4k2+4k+1﹣4k2﹣8k≥0

∴1﹣4k≥0,

∴k≤

∴當(dāng)k≤ 時(shí),原方程有兩個(gè)實(shí)數(shù)根


(2)解:假設(shè)存在實(shí)數(shù)k使得 ≥0成立.

∵x1,x2是原方程的兩根,

≥0,

≥0.

∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,

∴只有當(dāng)k=1時(shí),上式才能成立

又∵由(1)知k≤

∴不存在實(shí)數(shù)k使得 ≥0成立


【解析】(1)根據(jù)已知一元二次方程的根的情況,得到根的判別式△≥0,據(jù)此列出關(guān)于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通過(guò)解該不等式即可求得k的取值范圍;(2)假設(shè)存在實(shí)數(shù)k使得 ≥0成立.利用根與系數(shù)的關(guān)系可以求得 ,然后利用完全平方公式可以把已知不等式轉(zhuǎn)化為含有兩根之和、兩根之積的形式 ≥0,通過(guò)解不等式可以求得k的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.

1)若∠AOE=140°,求∠AOC的度數(shù);

2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小英在周末和爸爸媽媽以及爺爺奶奶一行6人,自駕外出旅游,出發(fā)前油箱里有油5升,在加油站加140元的油.已知油價(jià)是7/升,目的地距離出發(fā)地320千米,正常行駛時(shí),車子的耗油情況是0.42/千米.

(1)在加油站加油 升;車子的耗油情況換算成 /千米.

(2)在行駛過(guò)程中,設(shè)油箱內(nèi)余油y(),行駛路程x(千米),將y表示為x的函數(shù).

(3)若油箱里余油量低于5升會(huì)自動(dòng)報(bào)警,通過(guò)計(jì)算回答,小明他們?cè)诘竭_(dá)目的地之前,車子是否會(huì)自動(dòng)報(bào)警

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,F(xiàn)C=5,則正方形ABCD的外接圓的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)數(shù)用大括號(hào)括起來(lái),中間用逗號(hào)斷開(kāi),如:{1,2,-3},{-2,7,,19},我們稱之為集合,其中的數(shù)稱為集合的元素.如果一個(gè)集合滿足:當(dāng)有理數(shù)a是集合的元素時(shí),有理數(shù)5-a也必是這個(gè)集合的元素,這樣的集合我們稱為好的集合.例如集合{5,0}就是一個(gè)好的集合.

(1)請(qǐng)你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?

(2)請(qǐng)你再寫(xiě)出兩個(gè)好的集合(不得與上面出現(xiàn)過(guò)的集合重復(fù));

(3)寫(xiě)出所有好的集合中,元素個(gè)數(shù)最少的集合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,BD是中線,延長(zhǎng)BCE,使CE=CD

1)求證:DB=DE;

2)過(guò)點(diǎn)DDF垂直BE,垂足為F,若CF=3,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ADC=EFC,3=C,可推得∠1=2.理由如下:

解:因?yàn)椤?/span>ADC=EFC(已知)

所以ADEF(   ).

所以∠1=4(   ),

因?yàn)椤?/span>3=C(已知),

所以ACDG(   ).

所以∠2=4(   ).

所以∠1=2(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)解分式方程: + =
(2)解不等式組

查看答案和解析>>

同步練習(xí)冊(cè)答案