【題目】如圖,平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)?jiān)谧鴺?biāo)系中作出旋轉(zhuǎn)中心S并寫(xiě)出旋轉(zhuǎn)中心S的坐標(biāo):S
(4)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)作圖標(biāo)出P點(diǎn)并寫(xiě)出點(diǎn)P的坐標(biāo).P .
【答案】
(1)解:如圖1,△A1B1C是所求作的圖形,
(2)解:如圖1,平移后對(duì)應(yīng)的△A2B2C2
(3)( ,﹣1)
(4)(﹣2,0)
【解析】解:(3)如圖1,點(diǎn)S是所求作的點(diǎn),
由題意知,B1(0,0),B2(3,﹣2),∴S( .﹣1),
所以答案是:( ,﹣1);(4)如圖2,點(diǎn)P為所求作的點(diǎn),
由題意,點(diǎn)B(0,4)與B'關(guān)于x軸對(duì)稱(chēng),
∴B'(0,﹣4),
∵A(﹣3,2),
∴直線AB'的解析式為y=﹣2x﹣4,
令y=0,則﹣2x﹣4=0,
∴x=﹣2,
∴P(﹣2,0);
所以答案是(﹣2,0).
【考點(diǎn)精析】關(guān)于本題考查的軸對(duì)稱(chēng)-最短路線問(wèn)題,需要了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面給出的數(shù)軸中,點(diǎn) A 表示 1,點(diǎn) B 表示-2,回答下面的問(wèn)題:
(1)A、B 之間的距離是 ;
(2)觀察數(shù)軸,與點(diǎn) A 的距離為 5 的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使點(diǎn) A 與-3 表示的點(diǎn)重合,則點(diǎn) B 與數(shù) 表示的點(diǎn)重合;
(4)若數(shù)軸上 M、N 兩點(diǎn)之間的距離為 2018(M 在 N 的左側(cè)),且 M、N 兩點(diǎn)經(jīng)過(guò)(3)中折 疊 后 互 相 重 合 , 則 M 、 N 兩 點(diǎn) 表 示 的 數(shù) 分 別 是 : M : ;N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,黑、白兩個(gè)甲殼蟲(chóng)同時(shí)從A點(diǎn)出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲(chóng)爬行的路線是:
白甲殼蟲(chóng)爬行的路線是:那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2008條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是( )
[Failed to download image : http://192.168.0.10:8086/QBM/2018/6/4/1959595487502336/null/STEM/846c38f1abae464caa886400e123363c.png]
A. 0 B. 1 C. √2 D. √3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司的快遞員小李騎摩托車(chē)從公司M處向西行駛了3km到達(dá)A地送貨后,繼續(xù)向西行駛1km到達(dá)B地送貨,接著向東行駛了9km到達(dá)C地送貨,然后又繼續(xù)向東行駛了2km到達(dá)D處家的位置.
(1)以公司為原點(diǎn),向東為正方向畫(huà)出數(shù)軸,并在數(shù)軸上標(biāo)出A、B、C、D的位置;
(2)公司距離他家多遠(yuǎn)?
(3)若每千米用油0.08升,則小李本次出發(fā)共用油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的長(zhǎng);
(3)如圖3,在△ADE中,當(dāng)BD垂直平分AE于H,且∠BAC=2∠ADB時(shí),試探究CD2,BD2,AH2之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),(A在B左側(cè)),交y軸于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)求拋物線的對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo).
(3)拋物線上是否存在點(diǎn)F,使△ABF的面積為1?若存在,求F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是張亮、李娜兩位同學(xué)零花錢(qián)全學(xué)期各項(xiàng)支出的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,下列對(duì)兩位同學(xué)購(gòu)買(mǎi)書(shū)籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是( )
A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大
C. 張亮的百分比與李娜的百分比一樣大 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線 與x軸交于點(diǎn)A ,與y 軸交于點(diǎn)B,直線 與x軸交于點(diǎn)C,與直線交于點(diǎn)P.
(1)當(dāng)k=1 時(shí),求點(diǎn)C的坐標(biāo);
(2)如圖 1,點(diǎn)D為PA的中點(diǎn),過(guò)點(diǎn)D作DE⊥x軸于E,交直線于點(diǎn)F,若DF=2DE,求k的值;
(3)如圖2,點(diǎn)P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ 的延長(zhǎng)線交直線于點(diǎn)R,若PR=PC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com