【題目】如圖1,在矩形中,,,沿對(duì)角線剪開(kāi),再把沿方向平移,得到圖2,其中交于,交于.
(1)在圖2中,除與外,指出還有哪幾對(duì)全等三角形(不能添加輔助線和字母),并選擇一對(duì)加以證明;
(2)設(shè).①當(dāng)為何值時(shí),四邊形是菱形?②設(shè)四邊形的面積為,求的最大值.
【答案】(1)≌,≌;理由見(jiàn)解析;(2)①;②最大值為.
【解析】
(1)根據(jù)圖形得到全等的三角形≌,≌,利用ASA證明≌;
(2)①證明∽△ABC,求出,證明△∽△BAC求出,根據(jù)菱形的性質(zhì)得到,即可求出x;
②證明四邊形是平行四邊形,利用面積公式求出面積y,再配方為頂點(diǎn)式即可得到y的最大值.
(1)≌,≌,
證明∵圖1中,,∴.
∵,∴;
∵,,
∴≌.
(2)①∵,,∠BAC=90°,
∴AC=5,
∵∥BC,
∴∽△ABC,
∴,
∴,
∴,
∵∥AC,
∴△∽△BAC,
∴,
∴,
∴,
∵四邊形是菱形,
∴,
∴,
解得;
②∵AB∥,∥BC,
∴四邊形是平行四邊形
∴
∴y最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為25,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別落在邊AD、AB、BC、CD上,則每個(gè)小正方形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,以下列結(jié)論正確的是( )
①;②;③;④(m為任意實(shí)數(shù)).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:=(為任意實(shí)數(shù))
(1)無(wú)論取何值,拋物線恒過(guò)兩點(diǎn)________,________.
(2)當(dāng)時(shí),設(shè)拋物線在第一象限依次經(jīng)過(guò)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為,….將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過(guò)點(diǎn),的頂點(diǎn)為(,例如時(shí),拋物線經(jīng)過(guò)點(diǎn),頂點(diǎn)為)
①拋物線的解析式為________;頂點(diǎn)坐標(biāo)為________;
②在拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),并判斷四邊形的形狀;若不存在,請(qǐng)說(shuō)明理由.
③直接寫(xiě)出線段的長(zhǎng)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線的圖象過(guò),,三點(diǎn),頂點(diǎn)為.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)在軸上,且,求的長(zhǎng);
(3)若軸且在拋物線上,過(guò)作于,在直線上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng),是否存在這樣的點(diǎn)、使以、、為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)、的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年4月,過(guò)敏體質(zhì)檢測(cè)中心等機(jī)構(gòu)開(kāi)展了青少年形體測(cè)評(píng),專家組隨機(jī)抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況.我們對(duì)專家的測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),我們以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答些列問(wèn)題:
(1)請(qǐng)將兩幅圖補(bǔ)充完整;
(2)如果全市有10萬(wàn)名初中生,那么全市初中生中,三姿良好的學(xué)生約有 人.
(3)根據(jù)統(tǒng)計(jì)結(jié)果,請(qǐng)你簡(jiǎn)單談?wù)勛约旱目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)5名場(chǎng)上隊(duì)員的身高(單位:cm)是:183、187、190、200、210,現(xiàn)用一名身高為195cm的隊(duì)員換下場(chǎng)上身高為210cm的隊(duì)員,與換人前相比,場(chǎng)上隊(duì)員的身高( )
A.平均數(shù)變大,方差變大B.平均數(shù)變小,方差變大
C.平均數(shù)變大,方差變小D.平均數(shù)變小,方差變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y=(x>0)的圖象經(jīng)過(guò)點(diǎn)C且S△BEF=,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com