【題目】如圖,四邊形中ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),P為對(duì)角線AC延長(zhǎng)線上的任意一點(diǎn),PF交AD于M,PE交BC于N,EF交MN于K.
求證:K是線段MN的中點(diǎn).
【答案】證明見(jiàn)解析.
【解析】
取AC的中點(diǎn)Q,連接QF、QE,過(guò)C點(diǎn)作CR∥QF交MP于點(diǎn)R,連接NR.由QF∥AD,QE∥NC可證得=.由CR∥AD可知==1,則==,從而可證得FK∥RN,最后可得KM=KN.
取AC的中點(diǎn)Q,連接QF、QE,過(guò)C點(diǎn)作CR∥QF交MP于點(diǎn)R,連接NR,
∵Q、F、E分別是AC、CD、AB的中點(diǎn),
∴QF∥AD,QE∥NC,
∴=,=,
∵AQ=CQ,
∴=,
∵QF∥AD,CR∥QF,
∴CR∥AD,
∴==1,
∴FM=FR,
∴==,
∴EF∥RN.
∵FK∥RN,F(xiàn)M=FR,
∴KM=KN,即K是線段MN的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說(shuō)明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動(dòng)點(diǎn).若BF的延長(zhǎng)線交正方形ABCD的一邊于點(diǎn)G,且滿足AE=BG,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的邊AB上的高,且DE=4,求△ABC的邊AB上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如下表:
原進(jìn)價(jià)(元/張) | 零售價(jià)(元/張) | 成套售價(jià)(元/套) | |
餐桌 | a | 270 | 500 |
餐椅 | b | 70 |
若購(gòu)進(jìn)3張餐桌18張餐椅需要1170元;若購(gòu)進(jìn)5張餐桌25張餐椅需要1750元.
(1)求表中a,b的值;
(2)若該商場(chǎng)購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過(guò)200張.該商場(chǎng)計(jì)劃將全部餐桌配套銷售(一張餐桌和四張餐椅配成一套),其余餐椅以零售方式銷售.設(shè)購(gòu)進(jìn)餐桌的數(shù)量為x(張),總利潤(rùn)為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出總利潤(rùn)最大時(shí)的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,相交于點(diǎn),是的中點(diǎn),,,,
(1)求證:四邊形是平行四邊形;
(2)若,求的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CPQ是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針?lè)较蜓?/span>△ABC的三邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣2x+8分別交x軸,y軸于點(diǎn)A,B,直線yx+3交y軸于點(diǎn)C,兩直線相交于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,過(guò)點(diǎn)A作AE∥y軸交直線yx+3于點(diǎn)E,連接AC,BE.求證:四邊形ACBE是菱形;
(3)如圖3,在(2)的條件下,點(diǎn)F在線段BC上,點(diǎn)G在線段AB上,連接CG,FG,當(dāng)CG=FG,且∠CGF=∠ABC時(shí),求點(diǎn)G的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com