【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點D為AB的中點.
⑴如果點P在線段BC上以1cm/s的速度由點B向點C運(yùn)動,同時,點Q在線段CA上由點C向點A運(yùn)動.
①若點Q的運(yùn)動速度與點P的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,當(dāng)點Q的運(yùn)動速度為______cm/s時,在某一時刻也能夠使△BPD與△CPQ全等.
⑵若點Q以②中的運(yùn)動速度從點C出發(fā),點P以原來的運(yùn)動速度從點B同時出發(fā),都按逆時針方向沿△ABC的三邊運(yùn)動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在△ABC的哪條邊上?
【答案】(1)1s;(2)①點Q的運(yùn)動速度為cm/s時,能使△BPD≌△CPQ;②點P、Q在AC邊上相遇,相遇地點距離C點4cm處.
【解析】
(1)①根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù) 判定兩個三角形全等.
②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時間公式,先求得點運(yùn)動的時間,再求得點的運(yùn)動速度;
(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點的速度快,且在點的前邊,所以要想第一次相遇,則應(yīng)該比點多走等腰三角形的兩個邊長.
(1)①全等.理由如下:
證明:∵t=1秒,
∴BP=CQ=1×1=1 cm,
∵AB=6cm,
點D為AB的中點,
∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,
∴PC=4-1=3cm,
∴PC=BD.
又∵AB=AC,∴∠B=∠C,
②假設(shè)
又
則
∴點P,點Q運(yùn)動的時間秒,
(2)設(shè)經(jīng)過x秒后點P與點Q第一次相遇,
由題意得:1.5x=x+2×6,解得x=24.
∴點P共運(yùn)動了24×1m/s=24cm.
∵24=16+4+4 ∴點P、點Q在AC邊上相遇,
∴經(jīng)過24秒點P與點Q第一次在邊AC上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)試判斷四邊形ADCF的形狀,并證明;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中ABCD中,E,F(xiàn)分別是AB,CD的中點,P為對角線AC延長線上的任意一點,PF交AD于M,PE交BC于N,EF交MN于K.
求證:K是線段MN的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡長AB=10米,求小船C到岸邊的距離CA的長?(參考數(shù)據(jù):=1.73,結(jié)果保留兩位有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.
(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一種游戲:三張大小,質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字1,2,3,現(xiàn)將標(biāo)有數(shù)字的一面朝下,小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和,如果和為奇數(shù),則小明勝,若和為偶數(shù)則小亮勝.
(1)用列表或畫樹狀圖等方法,列出小明和小亮抽得的數(shù)字之和所有可能出現(xiàn)的情況.
(2)請判斷該游戲?qū)﹄p方是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點G、H.
(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.
①求證:∠1=∠2;
②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;
(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com