【題目】已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點G、H.
(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.
①求證:∠1=∠2;
②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;
(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.
【答案】(1)①見解析;②見解析;(2)2
【解析】
(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;
②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;
(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;
(1)①證明:如圖1中,
∵AB=AC,∠ABC=60°
∴△ABC是等邊三角形,
∴∠BAC=60°,
∵AD⊥BN,
∴∠ADB=90°,
∵∠MBN=30°,
∠BFD=60°=∠1+∠BAF=∠2+∠BAF,
∴∠1=∠2
②證明:如圖2中,
在Rt△BFD中,∵∠FBD=30°,
∴BF=2DF,
∵BF=2AF,
∴BF=AD,
∵∠BAE=∠FBC,AB=BC,
∴△BFC≌△ADB,
∴∠BFC=∠ADB=90°,
∴BF⊥CF
(2)在BF上截取BK=AF,連接AK.
∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,
∴∠CFB=∠2+∠4+∠BAC,
∵∠BFE=∠BAC=2∠EFC,
∴∠1+∠4=∠2+∠4
∴∠1=∠2,∵AB=AC,
∴△ABK≌CAF,
∴∠3=∠4,S△ABK=S△AFC,
∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,
∴∠KAF=∠1+∠3=∠AKF,
∴AF=FK=BK,
∴S△ABK=S△AFK,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點D為AB的中點.
⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為______cm/s時,在某一時刻也能夠使△BPD與△CPQ全等.
⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿△ABC的三邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+8分別交x軸,y軸于點A,B,直線yx+3交y軸于點C,兩直線相交于點D.
(1)求點D的坐標(biāo);
(2)如圖2,過點A作AE∥y軸交直線yx+3于點E,連接AC,BE.求證:四邊形ACBE是菱形;
(3)如圖3,在(2)的條件下,點F在線段BC上,點G在線段AB上,連接CG,FG,當(dāng)CG=FG,且∠CGF=∠ABC時,求點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,為線段上一點(不與,重合),點為線段上一點,,設(shè),.
(1)如圖(1),
①若,,則____________,_______________.
②若,,則____________,______________.
③寫出與的數(shù)量關(guān)系,并說明理由;
(2)如圖(2),當(dāng)點在的延長線上時,其它條件不變,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且m>n.(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(2)若每塊小矩形的面積為10cm2,兩個大正方形和兩個小正方形的面積和為58cm2,試求m+n的值
(3)②圖中所有裁剪線(虛線部分)長之和為 cm.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤元,每提高一個檔次,利潤每件增加元.
(1)每件利潤為元時,此產(chǎn)品質(zhì)量在第幾檔次?
(2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且≤≤),求出關(guān)于的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東臺市為打造“綠色城市”,積極投入資金進行河道治污與園林綠化兩項工程,已知年投資萬元,預(yù)計年投資萬元.若這兩年內(nèi)平均每年投資增長的百分率相同.
求平均每年投資增長的百分率;
按此增長率,計算年投資額能否達到萬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點的坐標(biāo)為、的坐標(biāo)為,點是的中點,點在邊上運動,當(dāng)是以腰長為5的等腰三角形時,點的坐標(biāo)為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com