如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩個(gè)不同的點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,3),連接BC、AC,該二次函數(shù)圖象的對(duì)稱(chēng)軸與x軸相交于點(diǎn)D.
(1)求這個(gè)二次函數(shù)的解析式、點(diǎn)D的坐標(biāo)及直線BC的函數(shù)解析式;
(2)點(diǎn)Q在線段BC上,使得以點(diǎn)Q、D、B為頂點(diǎn)的三角形與△ABC相似,求出點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,若存在點(diǎn)Q,請(qǐng)任選一個(gè)Q點(diǎn)求出△BDQ外接圓圓心的坐標(biāo).
分析:(1)設(shè)二次函數(shù)為y=a(x+2)(x-4),把點(diǎn)C(0,3)代入求出a的值即可得出二次函數(shù)的解析式,進(jìn)而得出拋物線的解析式求出對(duì)稱(chēng)軸方程,故可得出D點(diǎn)坐標(biāo),利用待定系數(shù)法求出直線BC的解析式,;
(2)根據(jù)勾股定理求出BC的長(zhǎng),由于相似三角形的對(duì)應(yīng)角不能確定,故應(yīng)分∠QDB=∠CAB和∠DQB=∠CAB兩種情況進(jìn)行討論;
(3)當(dāng)點(diǎn)Q的坐標(biāo)為(2,
3
2
)時(shí),設(shè)圓心的M(
5
2
,y),根據(jù)MD=MQ即可求出y的值,故可得出結(jié)論.
解答:解:(1)∵二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩個(gè)不同的點(diǎn)A(-2,0)、B(4,0),
與y軸交于點(diǎn)C(0,3),
∴設(shè)二次函數(shù)為y=a(x+2)(x-4),把點(diǎn)C(0,3)代入得,a(0+2)(0-4)=3,
解得a=-
3
8
,
∴這個(gè)一次函數(shù)的解析式為:y=-
3
8
x2+
3
4
x+3;
∵y=-
3
8
x2+
3
4
x+3=-
3
8
(x-1)2+
27
8
,
∴拋物線的對(duì)稱(chēng)軸是直x=1,
∴點(diǎn)D的坐標(biāo)為(1,0). 
設(shè)直線BC的解析式為;y=kx+b(k≠0),
4k+b=0
b=3
,解得
k=-
3
4
b=3

∴直線BC的解析式為y=-
3
4
x+3.

(2)∵A(-2,0),B(4,0),C(0,3),D(1,0),
∴OD=1,BD=3,CO=3,BO=4,AB=6,
∴BC=
OB2+OC2
=
42+32
=5,
如圖1,當(dāng)∠QDB=∠CAB時(shí),
QB
CB
=
DB
AB
,
QB
5
=
3
6
,解得QB=
5
2

過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,
∵OC⊥x軸,
∴QH∥CO.
QH
3
=
5
2
5
.解得QH=
3
2

把y=
3
2
代入y=-
3
4
x+3,得x=2.
∴此時(shí),點(diǎn)Q的坐標(biāo)為(2,
3
2
);
如圖2,當(dāng)∠DQB=∠CAB時(shí),
QB
AB
=
DB
CB
,即
QB
6
=
3
5
,得QB=
18
5

過(guò)點(diǎn)Q作QG⊥x軸于點(diǎn)G,
∵OC⊥x軸,
∴QG∥CO.
QG
3
=
18
5
5
.解得QG=
54
25

把y=
54
25
代入y=-
3
4
x+3,得x=
28
25

∴此時(shí),點(diǎn)Q的坐標(biāo)為(
28
25
,
54
25
).
綜上所述,點(diǎn)Q坐標(biāo)為(2,
3
2
)或(
28
25
54
25
);

(3)當(dāng)點(diǎn)Q的坐標(biāo)為(2,
3
2
)時(shí),設(shè)圓心的M(
5
2
,y).
∵M(jìn)D=MQ,
∴(
5
2
-1)2+y2=(
5
2
-2)2+(y-
3
2
2,解得y=
1
12

∴M(
5
2
,
1
12
).
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求二次函數(shù)及一次函數(shù)的解析式、拋物線的頂點(diǎn)坐標(biāo)、相似三角形的性質(zhì)等相關(guān)知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱(chēng)軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過(guò)點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,如圖的二次函數(shù)圖象(部分)刻畫(huà)了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬(wàn)元;
(3)從第幾個(gè)月起公司開(kāi)始盈利?該月公司所獲利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習(xí)冊(cè)答案