【題目】如圖,正方形ABCD的邊長為2,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE、DE.

(1)請直接寫出∠AEB的度數(shù),∠AEB=   ;

(2)將△AED沿直線AD向上翻折,得△AFD.求證:四邊形AEDF是菱形;

(3)連接EF,交AD于點 O,試求EF的長?

【答案】(1)75°;(2)證明見解析;(3)

【解析】

試題(1)由正方形和等邊三角形的性質(zhì)得出ABE=30°,AB=BE,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可求出AEB的度數(shù);

(2)先判斷出ABE≌△DCE,得到AE=ED,再由翻折的性質(zhì)即可得出結(jié)論;

(3)先由等邊三角形的性質(zhì)求出EH,進而得出OE,借助(2)的結(jié)論即可求出EF.

試題解析:(1)四邊形ABCD是正方形,

∴∠ABC=BCD=90°,AB=BC=CD,

∵△EBC是等邊三角形,

BE=BC,EBC=60°,

∴∠ABE=90°-60°=30°,AB=BE

∴∠AEB=BAE=(180°-30°)=75°;

(2)四邊形ABCD為正方形,

∴∠ABC=BCD=90°,AB=CD,

∵△BCE為等邊三角形,

∴∠BCE=EBC=60°,BE=EC,

∴∠ABE=DCE=90°-60°=30°,

∴△ABE≌△DCE,

AE=ED

∵△AED沿著AD翻折為AFD,

AE=ED=AF=FD

四邊形AEDF是菱形;

(3)如圖,

由翻折知,AE=AF,FAO=EAO,

EFAD,過點EEHBCH

在等邊三角形BCE中,BC=2,

EH=BC=,

EO=OH-EH=AB-EH=2-,

EF=2EO=2(2-)=4-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標系xOy中,已知直線y=kxk0)分別交反比例函數(shù)在第一象限的圖象于點A,B,過點BBDx軸于點D,交的圖象于點C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為6,點A,B,C為⊙O上三點,BA平分∠OBC,過點AADBCBC延長線于點D.

(1)求證:AD是⊙O的切線;

(2)當sinOBC=時,求BC的長;

(3)連結(jié)AC,當ACOB時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為(  )

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的手機沒電了,現(xiàn)有一個只含A,B,C,D四個同型號插座的插線板(如圖,假設(shè)每個插座都適合所有的充電插頭,且被選中的可能性相同),請計算:

(1)若小明隨機選擇一個插座插入,則插入A的概率為   ;

(2)現(xiàn)小明對手機和學(xué)習(xí)機兩種電器充電,請用列表或畫樹狀圖的方法表示出兩個插頭插入插座的所有可能情況,并計算兩個插頭插在相鄰插座的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當y1﹣y2=4時,求m的值;

(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,聯(lián)結(jié)DE,過頂點BBFDE,垂足為F,BF交邊DC于點G

1)求證:GDAB=DFBG;

2)聯(lián)結(jié)CF,求證:∠CFB=45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

同步練習(xí)冊答案