【題目】如圖:是銳角的兩條高,、分別是、的中點,若EF=6,.

1)證明:

2)判斷的位置關系,并證明你的結(jié)論;

3)求的長.

【答案】1)證明見解析;(2MN垂直平分EF,證明見解析;(3MN.

【解析】

1)依據(jù)BE、CF是銳角ABC的兩條高,可得∠ABE+∠A90°,∠ACF+∠A90°,進而得出∠ABE=∠ACF;

2)連接EM、FM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EMFMBC,再根據(jù)等腰三角形三線合一的性質(zhì)解答;

3)求出EM、EN,然后利用勾股定理列式計算即可得解.

解:(1)∵BE、CF是銳角ABC的兩條高,

∴∠ABE+∠A90°,∠ACF+∠A90°,

∴∠ABE=∠ACF

2MN垂直平分EF

證明:如圖,連接EM、FM

BE、CF是銳角ABC的兩條高,MBC的中點,

EMFMBC,

NEF的中點,

MN垂直平分EF;

3)∵EF6,BC24,

EMBC×2412,ENEF×63,

由勾股定理得,MN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(10)如圖,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BCAC = BC△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FPEF = FP。

1)在圖中,請你通過觀察、測量,猜想并寫出ABAP所滿足的數(shù)量關系和位置關系;

2)將三角板△EFP沿直線l向左平移到圖的位置時,EPAC于點Q,連接AP、BQ。猜想并寫出BQAP所滿足的數(shù)量關系和位置關系,并證明你的猜想;

3)將三角板△EFP沿直線l向左平移到圖的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ。你認為(2)中猜想的BQAP所滿足的數(shù)量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,共享單車逐漸成為高校學生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學生使用共享單車的情況,并整理成如下統(tǒng)計表.

使用次數(shù)

0

1

2

3

4

5

人數(shù)

11

15

23

28

18

5

(1)這天部分出行學生使用共享單車次數(shù)的中位數(shù)是   ,眾數(shù)是   ,該中位數(shù)的意義是   ;

(2)這天部分出行學生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

(3)若該校某天有1500名學生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王師傅非常喜歡自駕游,為了解他新買的轎車的耗油情況,將油箱加滿后進行了耗油實驗,得到下表中的數(shù)據(jù):

轎車行駛的路程

······

油箱中的剩余油量

·····

1)在這個問題中,自變量是_ 因變量是_ ;

2)該轎車油箱的容量為__ L,行駛時,估計油箱中的剩余油量為____;

3)王師傅將油箱加滿后,駕駛該轎車從地前往地,到達地時油箱中的剩余油量為,請估計兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)的圖象過原點O和點A(1, ),且與x軸交于點B,AOB的面積為

(1)求拋物線的解析式;

(2)若拋物線的對稱軸上存在一點M,使△AOM的周長最小,M點的坐標;

(3)Fx軸上一動點,Fx軸的垂線,交直線AB于點E,交拋物線于點P,PE=直接寫出點E的坐標(寫出符合條件的兩個點即可)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】惠民超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的40件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價-進價)

甲種商品

乙種商品

進價(元/件)

22

30

售價(元/件)

29

40

1)惠民超市購進甲、乙兩種商品各多少件?

2)惠民超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲利潤多少元?

3)惠民超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品每件降價1元銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多570元,求第二次乙商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師在講實數(shù)時畫了一個圖(如圖),即以數(shù)軸的單位長度為邊作一個正方形,然后以原點為圓心,正方形的對角線長為半徑畫弧交數(shù)軸于點A.

(1)A點表示的數(shù)是多少?

(2)請類比上面的作法在數(shù)軸上畫出表示-的點B.(請保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運30kg,A型機器人搬運900kgB型機器人搬運600kg所用時間相等,兩種機器人每小時分別搬運多少化工原料?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知CACB,CD是經(jīng)過∠BCA頂點C的一條直線.E,F是直線CD上的兩點,且∠BEC=∠CFAα

1)若直線CD在∠BCA的內(nèi)部,且E,F在射線CD上,請解決下面兩個問題:

如圖1,若∠BCA90°,α90°,則BE   CF;EF   |BEAF|(填“>”,“<”或“=”);

如圖2,若0°<∠BCA180°,請?zhí)砑右粋關于α與∠BCA數(shù)量關系的條件   ,使中的兩個結(jié)論仍然成立,補全圖形并證明.

2)如圖3,若直線CD在∠BCA的外部,∠BCAα,請用等式直接寫出EF,BE,AF三條線段的數(shù)量關系   .(不要求證明)

查看答案和解析>>

同步練習冊答案