【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.

【答案】y=(x-2)2+4

【解析】

先根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出A、B兩點(diǎn)的坐標(biāo),再過AACx軸,交B′B的延長線于點(diǎn)C,則C(4,1),AC=4-1=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.

∵函數(shù)y=(x-2)2+1的圖象過點(diǎn)A(1,m),B(4,n),
m=(1-2)2+1=1,n=(4-2)2+1=3,
A(1,1),B(4,3),
AACx軸,交B′B的延長線于點(diǎn)C,則C(4,1),
AC=4-1=3,
∵曲線段AB掃過的面積為9(圖中的陰影部分),
ACAA′=3AA′=9,
AA′=3,
即將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個(gè)單位長度得到一條新函數(shù)的圖象,
∴新圖象的函數(shù)表達(dá)式是y=(x-2)2+4.

故答案是:y=(x-2)2+4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊面積為100cm2的正方形紙片.

1)該正方形紙片的邊長為   cm(直接寫出結(jié)果);

2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為43.小麗能用這塊紙片裁剪出符合要求的紙片嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫 、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)

A0,4),點(diǎn)B軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)m=3時(shí),點(diǎn)B的橫坐標(biāo)的所有可能值是 ;當(dāng)點(diǎn)B的橫坐標(biāo)為4nn為正整數(shù))時(shí),m= (用含n的代數(shù)式表示.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將幾個(gè)小正方形與小長方形拼成一個(gè)邊長為(a+b+c)的正方形.

1)若用不同的方法計(jì)算這個(gè)邊長為(a+b+c)的正方形面積,就可以得到一個(gè)的等式,這個(gè)等式可以為   

2)請利用(1)中的等式解答下列問題:

①若三個(gè)實(shí)數(shù)a,b,c滿足a+b+c11,ab+bc+ac38,求a2+b2+c2的值;

②若三個(gè)實(shí)數(shù)x,y,z滿足2x×4y÷8z32,x2+4y2+9z245,求2xy3xz6yz的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,ABAC,AB為直徑的⊙OAC邊于點(diǎn)D,過點(diǎn)CCFAB,與過點(diǎn)B的切線交于點(diǎn)F連接BD.

(1)求證:BDBF;

(2)AB10CD4BC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是公園的一圓桌的主視圖,MN表示該桌面在路燈下的影子,CD則表示一個(gè)圓形的凳子.

(1)請?jiān)趫D中標(biāo)出路燈O的位置,并畫出CD的影子PQ;

(2)若桌面直徑與桌面距地面的距離為1.2 m,測得影子的最大跨度MN為2 m,求路燈O與地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋中裝有5個(gè)黃球、13個(gè)黑球和22個(gè)紅球,這些球除顏色外其他都相同.

1)求從袋中摸出一個(gè)球是黃球的概率;

2)求從袋中摸出一個(gè)球不是紅球的概率;

3)現(xiàn)在從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,若從袋中摸出一個(gè)球是黃球的概率為,則取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并回答問題.

求一元二次方程ax2+bx+c=0(a0)的根(用配方法).

解:ax2+bx+c=0,

a0,x2+x+=0,第一步

移項(xiàng)得:x2+x=﹣,第二步

兩邊同時(shí)加上(2,得x2+x+____2=﹣+2,第三步

整理得:(x+2=直接開方得x+=±,第四步

x=

x1=,x2=,第五步

上述解題過程是否有錯(cuò)誤?若有,說明在第幾步,指明產(chǎn)生錯(cuò)誤的原因,寫出正確的過程;若沒有,請說明上述解題過程所用的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究活動(dòng)一

如圖1,正方形ABCD和正方形QMNP,M=B,M是正方形ABCD的對稱中心,MNABF,QMADE,線段ME與線段MF的數(shù)量關(guān)系是   .(不必證明,直接給出結(jié)論即可)

探究活動(dòng)二:

如圖2,將上題中的正方形改為矩形,且AB=mBC,其他條件不變(矩形ABCD和矩形QMNP,M=B,M是矩形ABCD的對稱中心,MNABF,QMADE),探究并證明線段ME與線段MF的數(shù)量關(guān)系;

探究活動(dòng)三:

根據(jù)前面的探索和圖3,平行四邊形ABCD和平行四邊形QMNP中,若AB=mBC,M=B,M是平行四邊形ABCD的對稱中心,MNABF,QMADE,請?zhí)骄坎⒆C明線段ME與線段MF的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案