【題目】閱讀并回答問(wèn)題.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移項(xiàng)得:x2+x=﹣,第二步
兩邊同時(shí)加上()2,得x2+x+(____)2=﹣+()2,第三步
整理得:(x+)2=直接開(kāi)方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解題過(guò)程是否有錯(cuò)誤?若有,說(shuō)明在第幾步,指明產(chǎn)生錯(cuò)誤的原因,寫出正確的過(guò)程;若沒(méi)有,請(qǐng)說(shuō)明上述解題過(guò)程所用的方法.
【答案】有錯(cuò)誤,在第四步.
【解析】
①檢查原題中的解題過(guò)程是否有誤:在第四步時(shí),在開(kāi)方時(shí)對(duì)b2-4ac的值是否是非負(fù)數(shù)沒(méi)有進(jìn)行討論;②更正:分類討論b2-4ac≥0和b2-4ac<0時(shí),原方程的根是什么.
有錯(cuò)誤,在第四步.
錯(cuò)誤的原因是在開(kāi)方時(shí)對(duì)b2﹣4ac的值是否是非負(fù)數(shù)沒(méi)有進(jìn)行討論.
正確步驟為:,
①當(dāng)b2﹣4ac≥0時(shí),
,
,
x=,
∴x1=,x2=.
②當(dāng)b2﹣4ac<0時(shí),原方程無(wú)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上任意一點(diǎn),點(diǎn)Q為BC上一點(diǎn),且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當(dāng)PD=5時(shí)四邊形PBQD為菱形.求AD為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m+1)x2+2mx+(m﹣3)=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)m為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根?并求出這兩個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長(zhǎng)線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD,對(duì)角線AC,BD相較于點(diǎn)O,要使ABCD為矩形,需添加下列的一個(gè)條件是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1∥l2,分別交l1、l2于A. B兩點(diǎn),點(diǎn)C在直線l2上且在點(diǎn)B的右側(cè),點(diǎn)D在直線l1上且在點(diǎn)A左側(cè),點(diǎn)P是直線l3上的動(dòng)點(diǎn),且不與A. B重合,設(shè)∠DAB=∠α.
(1)如圖1,當(dāng)點(diǎn)P在線段AB上時(shí),求證:∠APC=∠α+∠PCB;
(2)如圖2,當(dāng)點(diǎn)P在線段BA的延長(zhǎng)線上時(shí),請(qǐng)寫出∠α、∠APC、∠PCB三個(gè)角之間的數(shù)量關(guān)系,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要從王同學(xué)和李同學(xué)中挑選一人參加縣知識(shí)競(jìng)賽在五次選拔測(cè)試中他倆的成績(jī)?nèi)缦卤恚?/span>
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
王同學(xué) | 60 | 75 | 100 | 90 | 75 |
李同學(xué) | 70 | 90 | 100 | 80 | 80 |
根據(jù)上表解答下列問(wèn)題:
(1)完成下表:
姓名 | 平均成績(jī)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 |
王同學(xué) | 80 | 75 | 75 | _____ |
李同學(xué) |
|
|
|
|
(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰(shuí)若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則王同學(xué)、李同學(xué)在這五次測(cè)試中的優(yōu)秀率各是多少?
(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為應(yīng)選誰(shuí)參加比賽比較合適?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2中,點(diǎn)B為線段AE上一點(diǎn),△ABC與△BED都是等邊三角形.
(1)如圖1,求證:AD=CE.
(2)如圖2,設(shè)CE與AD交于點(diǎn)F,連接BF.
①求證:∠CFA=60°.
②求證:CF+BF=AF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com