【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)A的坐標(biāo)為(m,0),且AB=4.
(1)填空:點(diǎn)B的坐標(biāo)為 (用含m的代數(shù)式表示);
(2)把射線AB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,△ABP的面積為8:
①求拋物線的解析式(用含m的代數(shù)式表示);
②當(dāng)0≤x≤1,拋物線上的點(diǎn)到x軸距離的最大值為時(shí),求m的值.
【答案】(1)(m﹣4,0);(2)①y=(x﹣m)(x﹣m+4);②m的值為:2+2或3﹣2或2≤m≤3.
【解析】
(1)A的坐標(biāo)為(m,0),AB=4,則點(diǎn)B坐標(biāo)為(m-4,0);
(2)①S△ABP= AByP=2yP=8,即:yP=4,求出點(diǎn)P的坐標(biāo)為(4+m,4),即可求解;
②拋物線對稱軸為x=m-2.分x=m-2≥1、0≤x=m-2≤1、x=m-2≤0三種情況,討論求解.
解:(1)A的坐標(biāo)為(m,0),AB=4,則點(diǎn)B坐標(biāo)為(m﹣4,0),故答案為(m﹣4,0);
(2)①S△ABP=AByP=2yP=8,∴yP=4,
把射線AB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,此時(shí),直線AP表達(dá)式中的k值為1,
設(shè):直線AP的表達(dá)式為:y=x+b,
把點(diǎn)A坐標(biāo)代入上式得:m+b=0,即:b=﹣m,
則直線AP的表達(dá)式為:y=x﹣m,
則點(diǎn)P的坐標(biāo)為(4+m,4),
則拋物線的表達(dá)式為:y=a(x﹣m)(x﹣m+4),
把點(diǎn)P坐標(biāo)代入上式得:a(4+m﹣m)(4+m﹣m+4)=4,
解得:a=,
則拋物線表達(dá)式為:y=(x﹣m)(x﹣m+4),
②拋物線的對稱軸為:x=m﹣2,
當(dāng)x=m﹣2≥1(即:m≥3)時(shí),x=0時(shí),拋物線上的點(diǎn)到x軸距離為最大值,
即:(0﹣m)(0﹣m+4)=,解得:m=2或2±2,
∵m≥3,故:m=2+2;
當(dāng)0≤x=m﹣2≤1(即:2≤m≤3)時(shí),在頂點(diǎn)處,拋物線上的點(diǎn)到x軸距離為最大值,
即:﹣(m﹣2﹣m)(m﹣2﹣m+4)=,符合條件,
故:2≤m≤3;
當(dāng)x=m﹣2≤0(即:m≤2)時(shí),x=1時(shí),拋物線上的點(diǎn)到x軸距離為最大值,
即:(1﹣m)(1﹣m+4)=,解得:m=3或3±2,
∵m≤2,故:m=3﹣2;
綜上所述,m的值為:2+2或3﹣2或2≤m≤3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個動點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.求S關(guān)于t的函數(shù)表達(dá)式;并求S最大時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母;(保留作圖痕跡,不寫作法)
①以為邊在上方外作等邊三角形;
②作的中線;
(2)計(jì)算:的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D在反比例函數(shù)的圖像上,點(diǎn)B、C在反比例函數(shù)的圖像上,若AB∥CD∥軸,∥軸,且,,,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店計(jì)劃購進(jìn)一批甲、乙兩種款式的運(yùn)動服進(jìn)行銷售,進(jìn)價(jià)和售價(jià)如下表所示:
運(yùn)動服款式 | 甲 | 乙 |
進(jìn)價(jià)(元/套) | 80 | 100 |
售價(jià)(元/套) | 120 | 160 |
若購進(jìn)兩種款式的運(yùn)動服共300套,且投入資金不超過26800元.
(1) 該服裝店應(yīng)購進(jìn)甲款運(yùn)動服至少多少套?
(2)若服裝店購進(jìn)甲款運(yùn)動服的進(jìn)價(jià)每套降低a元,并保持這兩款運(yùn)動服的售價(jià)不變,且最多購進(jìn)240套甲款運(yùn)動服.如果這批運(yùn)動服售出后,服裝店剛好獲利18480元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1在直線l1:y=x上,過點(diǎn)A1作x軸的平行線交直線l2:y=x于點(diǎn)B1,
過點(diǎn)B1作l2的垂線交l1于點(diǎn)A2,過點(diǎn)A2作x軸的平行線交直線l2于點(diǎn)B2,過點(diǎn)B2作l2的垂線交l1于點(diǎn)A3,過點(diǎn)A3作x軸的平行線交直線l2于點(diǎn)B3,……,過點(diǎn)B1,B2,B3,……,分別作l1的平行線交A2B2于點(diǎn)C1,交A3B3于點(diǎn)C2,交A4B4于點(diǎn)C3,……,按此規(guī)律繼續(xù)下去,若OA1=1,則點(diǎn)的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線(a≠0)與x軸的交點(diǎn)為A、B(A在B的左邊)且AB=3,與y軸交于C
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)若拋物線過點(diǎn)E(-1,2),求拋物線的解析式.
(3)在x軸的下方的拋物線上是否存在一點(diǎn)P使得△PAC的面積為3,若存在求出P點(diǎn)的坐標(biāo),不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了促進(jìn)旅游業(yè)的發(fā)展,要在如圖所示的三條公路,,圍成的一塊地上修建一個度假村,要使這個度假村到,兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是( )
A.畫的平分線,再畫線段的垂直平分線,兩線的交點(diǎn)符合選址條件
B.先畫和的平分線,再畫線段的垂直平分線,三線的交點(diǎn)符合選址條件
C.畫三個角,和三個角的平分線,交點(diǎn)即為所求
D.畫,,三條線段的垂直平分線,交點(diǎn)即為所求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com