【題目】如圖,已知四邊形ABCD是平行四邊形.

1)用直尺和圓規(guī)作出對角線AC的垂直平分線,分別交ADBCEF;(保留作圖痕跡,不寫作法)

2)在(1)作出的圖形中,連接CEAF,若AB4BC8,且ABAC,求四邊形AECF的周長.

【答案】1)見詳解;(2)四邊形AECF的周長為16

【解析】

1)分別以A,C為圓心,比AC的一半長為半徑畫弧,交于兩點(diǎn),確定出垂直平分線即可;

2)根據(jù)平行四邊形的判定和菱形的判定與性質(zhì)解答即可.

解:(1)如圖所示:直線EF即為所求.

2)由(1)作圖可知FBC的中點(diǎn),

FCBC4,

AECF4,

AEFC,

∴四邊形AECF是平行四邊形,

ACEF

∴四邊形AECF是菱形,

∴四邊形AECF的周長為16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于坐標(biāo)平面內(nèi)的點(diǎn),先將該點(diǎn)向右平移1個單位,再向上平移2個單位,這種點(diǎn)的運(yùn)動稱為點(diǎn)的斜平移,如點(diǎn)P2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(35).已知點(diǎn)A的坐標(biāo)為(10).如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對稱點(diǎn)為點(diǎn)B,點(diǎn)B關(guān)于直線l的對稱點(diǎn)為點(diǎn)C.若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),則點(diǎn)B的坐標(biāo)為_____n的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,分別在邊上,,,則線段的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,矩形ABCD中,AB=mBC=n,將此矩形繞點(diǎn)B順時針方向旋轉(zhuǎn)θθ90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.

1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點(diǎn)D到點(diǎn)D1所經(jīng)過路徑的長度;

2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時針方向旋轉(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2BC的延長線上,設(shè)邊A2BCD交于點(diǎn)E,若,求的值.

3)如圖二,在(2)的條件下,直線AB上有一點(diǎn)P,BP=2,點(diǎn)E是直線DC上一動點(diǎn),在BE左側(cè)作矩形BEFG且始終保持,設(shè)AB=,試探究點(diǎn)E移動過程中,PF是否存在最小值,若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某段地鐵工程由甲、乙兩工程隊(duì)合作天可完成.若單獨(dú)施工,甲工程隊(duì)比乙工程隊(duì)多用天.

求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?

如果甲工程隊(duì)施工每天需付施工費(fèi)萬元,乙工程隊(duì)施工每天需付施工費(fèi)萬元,甲工程隊(duì)最多要單獨(dú)施工多少天后,再由甲.乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線經(jīng)過坐標(biāo)原點(diǎn).

1)求拋物線的解析式和頂點(diǎn)B的坐標(biāo);

2)設(shè)點(diǎn)A是拋物線與x軸的另一個交點(diǎn)且A、C兩點(diǎn)關(guān)于y軸對稱,試在y軸上確定一點(diǎn)P,使PA+PB最短,并求出點(diǎn)P的坐標(biāo);

3)過點(diǎn)AADBPy軸于點(diǎn)D,求到直線AP、ADCP距離相等的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若∠ACPB,求證:AC2AP·AB

(2) MCP的中點(diǎn),AC2,

如圖2,若∠PBMACP,AB3,求BP的長;

如圖3,若∠ABC45°,ABMP60°,直接寫出BP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達(dá)到196.

1)求該基地這兩年“早黑寶”種植面積的平均增長率;

2)市場調(diào)查發(fā)現(xiàn),當(dāng)“早黑寶”的售價為20/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12/千克,若使銷售“早黑寶”每天獲利1750元,則售價應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是    ;

(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護(hù)人員來自同一所醫(yī)院的概率.

查看答案和解析>>

同步練習(xí)冊答案