【題目】已知:正方形紙片ABCD的邊長(zhǎng)為4,將該正方形紙片沿EF折疊(E,F(xiàn)分別在AB,CD邊上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P.
(1)如圖①,連接PE,若M是AD邊的中點(diǎn).
①寫出圖中與△PMD相似的三角形.
②求△PMD的周長(zhǎng).
(2)如圖②,隨著落點(diǎn)M在AD邊上移動(dòng)(點(diǎn)M不與A、D重合),△PDM的周長(zhǎng)是否發(fā)生變化?請(qǐng)說明你的理由.
【答案】
(1)
解:①依據(jù)翻折的性質(zhì)可知∠EMP=∠B=90°,∠C=∠N=90°
∴∠AME+∠PMD=90°.
又∵∠AME+∠AEM=90°,
∴∠AEM=∠PMD.
又∵∠A=∠D,
∴△AME∽△DPM.
∵∠MPD=∠FPN,∠D=∠N=90°
∴△MPD∽△FPN.
∵△AME∽△DPM,
∴ .
又∵AM=MD,
∴ .
又∵∠EMP=∠D=90°,
∴△EMP∽△MDP.
所以有:△AME∽△DPM,△AME∽△DPM,△EMP∽△MDP.
②∵四邊形ABCD是正方形,
∴AD=AB=4.
∵點(diǎn)M是AD邊中點(diǎn),
∴AM=DM=2.
由折疊的性質(zhì)得:ME=BE,
∴△MEA的周長(zhǎng)為6.
在Rt△MEA中,設(shè)AE=x,則ME=4﹣x.
∴x2+22=(4﹣x)2,解得:x= .
∵△PMD∽△MEA,
∴ = = ,即 .
∴△PMD的周長(zhǎng)為8
(2)
解:△PMD的周長(zhǎng)不變.
設(shè)AM=m,AE=n,則DM=4﹣m,EM=4﹣n,△AEM的周長(zhǎng)=4+m.
在Rt△AME中,依據(jù)勾股定理可知:m2+n2=(4﹣n)2,即8n=16﹣m2.
∵△PMD∽△MEA,
∴ = .
∴△PMD的周長(zhǎng)= = = =8
【解析】(1)①依據(jù)兩組角對(duì)應(yīng)相等的三角形相似可證明△AEM∽△DMP,△PFN∽△PMD,然后依據(jù)兩組邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似證明△EMP∽△MDP即可;②設(shè)AE=x,則EM=4﹣x,在Rt△AEM中,依據(jù)勾股定理可求得x的值,然后可求得△AEM的周長(zhǎng),然后依據(jù)相似三角形的周長(zhǎng)比等于相似比求解即可;(2)設(shè)AM=m,AE=n,則DM=4﹣m,EM=4﹣n.在Rt△AEM中,依據(jù)勾股定理和完全平方公式可得到8n=16﹣m2 , 然后可△PMD∽△MEA可求得△PMD的周長(zhǎng).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用翻折變換(折疊問題)和相似三角形的應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等;測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(3a2-ab+7)-(5ab-4a2+7),其中, a=2,b=;
(2)3(ab-5b2+2a2)-(7ab+16a2-25b2),其中|a-1|+(b+1)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】谷歌人工智能AlphaGo機(jī)器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學(xué)網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學(xué)習(xí)的月收費(fèi)方式:
收費(fèi) 方式 | 月使用費(fèi)(元) | 包時(shí)上網(wǎng) 時(shí)間(h) | 超時(shí)費(fèi)(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
設(shè)小明每月上網(wǎng)學(xué)習(xí)人工智能課程的時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA元,yB元.
(1)當(dāng)x≥50時(shí),分別求出yA,yB與x之間的函數(shù)關(guān)系式;
(2)若小明3月份上該網(wǎng)站學(xué)習(xí)的時(shí)間為60小時(shí),則他選擇哪種方式上網(wǎng)學(xué)習(xí)合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在一張長(zhǎng)方形紙條上畫一條數(shù)軸.
(1)折疊紙條使數(shù)軸上表示的點(diǎn)與表示5的點(diǎn)重合,折痕與數(shù)軸的交點(diǎn)表示的數(shù)是 ;
(2)如果數(shù)軸上兩點(diǎn)之間的距離為8,經(jīng)過(1)的折疊方式能夠重合,那么左邊這個(gè)點(diǎn)表示的數(shù)是 ;
(3)如圖2,點(diǎn)A、B表示的數(shù)分別是、,數(shù)軸上有點(diǎn)C,使得AC=2BC,那么點(diǎn)C表示的數(shù)是 ;
(4)如圖2,若將此紙條沿A、B兩處剪開,將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折次后,再將其展開,求最左端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=4,E為斜邊AB的中點(diǎn),點(diǎn)P是射線BC的一個(gè)動(dòng)點(diǎn),連接AP、PE,將△AEP沿著邊PE疊,折疊后得到△EPA,當(dāng)折疊后△EPA與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則BP的長(zhǎng)__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=90°,且AD=9cm,AB=4cm,延長(zhǎng)BC到點(diǎn)E,使CE=3cm,連接DE.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿線段AD運(yùn)動(dòng);動(dòng)點(diǎn)Q從E點(diǎn)出發(fā)以每秒3cm的速度沿EB向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P、Q有一個(gè)到位置時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問題:
(1)求DE的長(zhǎng)
(2)當(dāng)t為多少時(shí),四邊形PQED成為平行四邊形;
(3)請(qǐng)直接寫出使得△DQE是等腰三角形時(shí)t的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=( )
A.
B.
C.
D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(2,0)和B(t,0)(t≥2),與y軸交于點(diǎn)C,直線l:y=x+2t經(jīng)過點(diǎn)C,交x軸于點(diǎn)D,直線AE交拋物線于點(diǎn)E,且有∠CAE=∠CDO,作CF⊥AE于點(diǎn)F.
(1)求∠CDO的度數(shù);
(2)求出點(diǎn)F坐標(biāo)的表達(dá)式(用含t的代數(shù)式表示);
(3)當(dāng)S△COD﹣S四邊形COAF=7時(shí),求拋物線解析式;
(4)當(dāng)以B,C,O三點(diǎn)為頂點(diǎn)的三角形與△CEF相似時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com