【題目】如圖,O是△ABC的外接圓,∠C60°,ADO的直徑,QAD延長(zhǎng)線上的一點(diǎn),且BQAB

1)求證:BQO的切線;

2)若AQ6

O的半徑;

P是劣弧AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PEFABEF分別交CA、CB的延長(zhǎng)線于E、F兩點(diǎn),連接OP,當(dāng)OPAB之間是什么位置關(guān)系時(shí),線段EF取得最大值?判斷并說(shuō)明理由.

【答案】1)詳見(jiàn)解析;(2①⊙O的半徑為2;當(dāng)OP垂直平分AB時(shí),線段EF取得最大值,理由詳見(jiàn)解析.

【解析】

1)根據(jù)同弧所對(duì)的圓周等于圓心角的一半,結(jié)合等腰三角形的性質(zhì),可求∠OBQ90°

2)①設(shè)出半徑,表示出OQ,運(yùn)用三角函數(shù)建立方程即可求解;

②過(guò)點(diǎn)CCHEF,垂足為H,交AB于點(diǎn)K,推理出EF隨著HK的增大而增大,當(dāng)HK取最大值時(shí),EF取最大值即可求解.

解:如圖1,

1)連接OB

∵∠C60°,

∴∠AOB120°

OAOB,

∴∠OAB=∠OBA30°

BQAB,

∴∠Q=∠OAB30°

∴∠ABQ120°,

∴∠OBQ90°,

BQ是⊙O的切線;

2)①設(shè)圓的半徑為r,則OQ6r,

由(1)知,∠Q30°,∠OBQ90°,

sin30°,

解得:r2;

②如圖2

當(dāng)OP垂直平分AB時(shí),線段EF取得最大值;

理由如下:

由(1)知,AQ6,∠Q=∠BAQ30°,

可求AB,

過(guò)點(diǎn)CCHEF,垂足為H,交AB于點(diǎn)K,

EFAB,

CKAB,ABC∽△EFC,

,

EF,

易知:CK是定值,所以,EF隨著HK的增大而增大,

當(dāng)HK取最大值時(shí),EF取最大值,

∴當(dāng)點(diǎn)P為劣弧AB的中點(diǎn)時(shí),HK最大,此時(shí)OP垂直平分AB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)本次調(diào)查中C類女生有 名,D類男生有 名;將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)計(jì)算扇形統(tǒng)計(jì)圖中D所占的圓心角是 ;

3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買一批玻璃杯和保溫杯,計(jì)劃用2000元購(gòu)買玻璃杯,用2800元購(gòu)買保溫杯.已知一個(gè)保溫杯比一個(gè)玻璃杯貴10元.該公司購(gòu)買的玻璃杯與保溫杯的數(shù)量能相同嗎?

(1)根據(jù)題意,甲和乙兩同學(xué)都先假設(shè)該公司購(gòu)買的玻璃杯與保溫杯的數(shù)量能相同,并分別列出的方程如下:;=10,根據(jù)兩位同學(xué)所列的方程,請(qǐng)你分別指出未知數(shù)x,y表示的意義:x表示 ;y表示 ;

(2)任選其中一個(gè)方程說(shuō)明該公司購(gòu)買的玻璃杯與保溫杯的數(shù)量能否相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,有一個(gè)z字圖形,其中ABCD,ABCDBC123

1)如圖2,若以BC為直徑的⊙O恰好經(jīng)過(guò)點(diǎn)D,連結(jié)AO

①求cosC

②當(dāng)AB2時(shí),求AO的長(zhǎng).

2)如圖3,當(dāng)A,B,CD四點(diǎn)恰好在同一個(gè)圓上時(shí).求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點(diǎn)為M,直線ly2xax軸,y軸分別交于A,B

1)對(duì)于拋物線C1,以下結(jié)論正確的是   ;

對(duì)稱軸是:直線x1頂點(diǎn)坐標(biāo)(1,﹣a2);拋物線一定經(jīng)過(guò)兩個(gè)定點(diǎn).

2)當(dāng)a0時(shí),設(shè)△ABM的面積為S,求Sa的函數(shù)關(guān)系;

3)將二次函數(shù)yax22ax2的圖象C1繞點(diǎn)Pt,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點(diǎn)為N

當(dāng)﹣2x1時(shí),旋轉(zhuǎn)前后的兩個(gè)二次函數(shù)y的值都會(huì)隨x的增大而減小,求t的取值范圍;

當(dāng)a1時(shí),點(diǎn)Q是拋物線C1上的一點(diǎn),點(diǎn)Q在拋物線C2上的對(duì)應(yīng)點(diǎn)為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩公司為“見(jiàn)義勇為基金會(huì)”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.

請(qǐng)你根據(jù)以上信息,提出一個(gè)用分式方程解決的問(wèn)題,并寫出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級(jí)350名學(xué)生參加的漢字聽(tīng)寫大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/

頻數(shù)

頻率

50≤x60

2

0.04

60≤x70

6

0.12

70≤x80

9

b

80≤x90

a

0.36

90≤x≤100

15

0.30

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

1a   ,b   

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)這次比賽成績(jī)的中位數(shù)會(huì)落在   分?jǐn)?shù)段;

4)若成績(jī)?cè)?/span>90分以上(包括90分)的為優(yōu)等,則該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在三角形ABC中,∠ACB=90°AC=6,BC=8,點(diǎn)D為邊BC的中點(diǎn),射線DEBCAB于點(diǎn)E.點(diǎn)P從點(diǎn)D出發(fā),沿射線DE以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).以PD為斜邊,在射線DE的右側(cè)作等腰直角DPQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).

1)用含t的代數(shù)式表示線段EP的長(zhǎng).

2)求點(diǎn)Q落在邊AC上時(shí)t的值.

3)當(dāng)點(diǎn)QABC內(nèi)部時(shí),設(shè)PDQABC重疊部分圖形的面積為S(平方單位),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,分析下列四個(gè)結(jié)論:①abc0;②b2-4ac0;③a+b+c0;④a-b+c0.其中正確的結(jié)論有( 。

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案