【題目】如圖,在△ABC中,∠ACB=90°,將△ABC沿直線AB翻折得到△ABD,連接CD交AB于點M.E是線段CM上的點,連接BE.F是△BDE的外接圓與AD的另一個交點,連接EF,BF,
(1)求證:△BEF是直角三角形;
(2)求證:△BEF∽△BCA;
(3)當AB=6,BC=m時,在線段CM正存在點E,使得EF和AB互相平分,求m的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)想辦法證明∠BEF=90°即可解決問題(也可以利用圓內接四邊形的性質直接證明).
(2)根據(jù)兩角對應相等兩三角形相似證明.
(3)證明四邊形AFBE是平行四邊形,推出FJ=BD=m,EF=m,由△ABC∽△CBM,可得BM=,由△BEF∽△BCA,推出,由此構建方程求解即可.
(1)證明:由折疊可知,∠ADB=∠ACB=90°
∵∠EFB=∠EDB,∠EBF=∠EDF,
∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,
∴∠BEF=90°,
∴△BEF是直角三角形.
(2) 證明:∵BC=BD,
∴∠BDC=∠BCD,
∵∠EFB=∠EDB,
∴∠EFB=∠BCD,
∵AC=AD,BC=BD,
∴AB⊥CD,
∴∠AMC=90°,
∵∠BCD+∠ACD=∠ACD+∠CAB=90°,
∴∠BCD=∠CAB,
∴∠BFE=∠CAB,
∵∠ACB=∠FEB=90°,
∴△BEF∽△BCA.
(3) 設EF交AB于J.連接AE,如下圖所示:
∵EF與AB互相平分,
∴四邊形AFBE是平行四邊形,
∴∠EFA=∠FEB=90°,即EF⊥AD,
∵BD⊥AD,
∴EF∥BD,
∵AJ=JB,
∴AF=DF,
∴ FJ=
∴ EF=
∵ △ABC∽△CBM
∴ BC:MB=AB:BC
∴ BM=,
∵ △BEJ∽△BME,
∴ BE:BM=BJ:BE
∴ BE=,
∵ △BEF∽△BCA,
∴
即
解得(負根舍去).
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學生人數(shù)是多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).
(4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年12月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網上問卷調查的方式進行了隨機抽樣調查(每名員工必須且只能選擇一項),并將調查結果繪制成如下兩幅統(tǒng)計圖.
請你根據(jù)上面的信息,解答下列問題
(1)本次共調查了_______名員工,條形統(tǒng)計圖中________;
(2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);
(3)在調查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內普及防護措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(3,0),點C三點.
(1)求拋物線的解析式;
(2)x軸上是否存在點P,使PC+PB最小?若存在,請求出點P的坐標及PC+PB的最小值;若不存在,請說明理由;
(3)連接BC,設E為線段BC中點.若M是拋物線上一動點,將點M繞點E旋轉180°得到點N,當以B、C、M、N為頂點的四邊形是矩形時,直接寫出點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CE∥AB,DE交AC于點F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=5,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)b,c是常數(shù),圖象的一部分,與x軸的交點A在點和之間,對稱軸是對于下列說法:;;;為實數(shù));(5)當時,,其中正確的是( )
A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(4)D.(3)(4)(5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B在第一象限,BA⊥x軸于點A,反比例函數(shù)y=(x>0)的圖象與線段AB相交于點C,C是線段AB的中點,點C關于直線y=x的對稱點C'的坐標為(m,6)(m≠6),若△OAB的面積為12,則k的值為( 。
A.4B.6C.8D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知二次函數(shù)y=ax2+4ax+c(a<0)的圖像與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,頂點為點D,DH⊥x軸于H與AC交于點E.連接CD、BC、BE.若S△CBE∶S△ABE=2∶3,
(1)點A的坐標為 ,點B的坐標為 ;
(2)連結BD,是否存在數(shù)值a,使得∠CDB=∠BAC?若存在,請求出a的值;若不存在,請說明理由;
(3)若AC恰好平分∠DCB,求二次函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com