【題目】如圖,已知平行四邊形ABCD中,∠ABC的平分線與邊CD的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且AF=DF,
①求證:AB=DE;
②若AB=3,BF=5,求△BCE的周長(zhǎng).
【答案】①見(jiàn)解析②22
【解析】
①利用平行四邊形的性質(zhì)∠A=∠FDE,∠ABF=∠E,結(jié)合AF=DF,可判定△ABF≌△DEF,即可得出AB=DE;
②利用角平分線以及平行線的性質(zhì),即可得到AF=AB=3,進(jìn)而得出BC=AD=6,CD=AB=3,依據(jù)△ABF≌△DEF,可得DE=AB=3,EF=BF=5,進(jìn)而得到△BCE的周長(zhǎng).
解:如圖①∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠A=∠FDE,∠ABF=∠E,
∵AF=DF,
∴△ABF≌△DEF,
∴AB=DE;
②∵BE平分∠ABC,
∴∠ABF=∠CBF,
∵AD∥BC,
∴∠CBF=∠AFB,
∴∠ABF=∠AFB,
∴AF=AB=3,
∴AD=2AF=6
∵四邊形ABCD是平行四邊形,
∴BC=AD=6,CD=AB=3,
∵△ABF≌△DEF,
∴DE=AB=3,EF=BF=5,
∴CE=6,BE=EF+BF=10,
∴△BCE的周長(zhǎng)=BC+CE+BE=10+6+6=22.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在線段AC上有一動(dòng)點(diǎn)D,連接BD并作∠DBE,使∠DBE=50°,BE邊交直線AW于點(diǎn)E,連接DE.
(1)如圖1,當(dāng)點(diǎn)E在射線AW上時(shí),直接判斷:AE+DE CD;(填“>”、“=”或“<”)
(2)如圖2,當(dāng)點(diǎn)E在射線AW的反向延長(zhǎng)線上時(shí),
①判斷線段CD,DE,AE之間的數(shù)量關(guān)系,并證明;
②若S四邊形ABDE﹣S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點(diǎn)Q與點(diǎn)B在AC的同側(cè),且AQ⊥AC.
(1)如圖1,點(diǎn)Q不與點(diǎn)A重合,連結(jié)CQ交AB于點(diǎn)P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(2)是否存在點(diǎn)Q,使△PAQ與△ABC相似,若存在,求AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)點(diǎn)B作BD⊥AQ,垂足為D.將以點(diǎn)Q為圓心,QD為半徑的圓記為⊙Q.若點(diǎn)C到⊙Q上點(diǎn)的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,D是邊AB上一點(diǎn),E是邊AC的中點(diǎn),作CF∥AB交DE的延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADE≌△CFE;
(2)若AB=AC,DB=2,CE=5,求CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(+18)+(-32)+(-16)+(+26)
(2)--(-1)-(-1)+(-1.75)
(3)(-42)×(-+)
(4)-14-[10-(3-5)2]-(-1)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖方式放置,點(diǎn)A1、A2、A3…和點(diǎn)C1、C2、C3…分別在直線和x軸上。已知點(diǎn)B1(1,1)、B2(3,2),請(qǐng)寫(xiě)出點(diǎn)B3的坐標(biāo)是___________,點(diǎn)Bn的坐標(biāo)是_______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O,則∠AOB的度數(shù)為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)正方體的表面涂上顏色.如圖把正方體的棱等分,然后沿等分線把正方體切開(kāi),能夠得到個(gè)小正方體,通過(guò)觀察我們可以發(fā)現(xiàn)個(gè)小正方體全是個(gè)面涂有顏色的.如果把正方體的棱三等分,然后沿等分線把正方體切開(kāi),能夠得到個(gè)小正方體,通過(guò)觀察我們可以發(fā)現(xiàn)這些小正方體中有個(gè)是個(gè)面涂有顏色的,有個(gè)是個(gè)面涂有顏色的,有個(gè)是個(gè)面涂有顏色的,還有個(gè)各個(gè)面都沒(méi)有涂色.
(1)如果把正方體的棱等分,所得小正方體表面涂色情況如何呢?把正方體的棱等分呢?(請(qǐng)?zhí)顚?xiě)下表):
棱等分?jǐn)?shù) | 等分 | 等分 |
面涂色的正方體 | ___________個(gè) | _____________個(gè) |
面涂色的正方體 | __________個(gè) | ____________個(gè) |
面涂色的正方體 | ___________個(gè) | ____________個(gè) |
各個(gè)面都無(wú)涂色的正方體 | ___________個(gè) | ____________個(gè) |
(2)請(qǐng)直接寫(xiě)出將棱等分時(shí)只有一個(gè)面涂色的小正方體的個(gè)數(shù)_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com