【題目】如圖,在矩形中,是上一點(diǎn),垂直平分,分別交、、于點(diǎn)、、,連接、.
(1)求證:;
(2)求證:四邊形是菱形;
(3)若,為的中點(diǎn),,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
(1)先根據(jù)線段垂直平分線的性質(zhì)證明PB=PE,由ASA證明△BOQ≌△EOP;
(2)由(1)得出PE=QB,證出四邊形BPEQ是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論;
(3)根據(jù)三角形中位線的性質(zhì)可得AE+BE=2OF+2OB=18,設(shè)AE=x,則BE=18x,在Rt△ABE中,根據(jù)勾股定理可得,BE=10,得到,設(shè)PE=y,則AP=8y,BP=PE=y,在Rt△ABP中,根據(jù)勾股定理可得,解得,在Rt△BOP中,根據(jù)勾股定理可得,由PQ=2PO即可求解.
解:(1)∵垂直平分,
∴,,
∵四邊形是矩形,
∴,
∴,
在與中,,
∴,
(2)∵
∴,
又∵,
∴四邊形是平行四邊形,
又∵,
∴四邊形是菱形;
(3)∵,分別為,的中點(diǎn),
∴,
設(shè),則,在中,,
解得,,
∴,
設(shè),則,,
在中,,
解得,
在中,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度數(shù).
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)開(kāi)展演講比賽,學(xué)校決定購(gòu)買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價(jià)相同:筆記本定價(jià)為每本25元,鋼筆每支定價(jià)6元,但是他們的優(yōu)惠方案不同,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.已知七年級(jí)需筆記本20本,鋼筆x支(大于20支).問(wèn):
(1)在甲店購(gòu)買需付款 元,在乙店購(gòu)買需付款 元;
(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)到哪家商店購(gòu)買較為合算?
(3)當(dāng)x=40時(shí),請(qǐng)?jiān)O(shè)計(jì)一種方案,使購(gòu)買最省錢?算出此時(shí)需要付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法,其中正確的有( 。
①如果a大于b,那么a的倒數(shù)小于b的倒數(shù);②若a與b互為相反數(shù),則=﹣;③幾個(gè)有理數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);④如果mx=my,那么x=y,
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線)相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖①),易證:OD+OE=OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中且,又、為的三等分點(diǎn).
(1)求證;
(2)證明:;
(3)若點(diǎn)為線段上一動(dòng)點(diǎn),連接則使線段的長(zhǎng)度為整數(shù)的點(diǎn)的個(gè)數(shù)________.(直接寫(xiě)答案無(wú)需說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1);
(2)﹣23+(﹣3)×|﹣4|﹣(﹣4)2+(﹣2)
(3)3x2﹣(2x2﹣2x)+(4x﹣3x2)
(4)4(a2﹣5a)﹣5(2a2﹣3a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AB上,點(diǎn)D在y軸的負(fù)半軸上,C、D兩點(diǎn)到x軸的距離均為2.
(1)點(diǎn)C的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 ;
(2)點(diǎn)P為線段OA上的一動(dòng)點(diǎn),當(dāng)PC+PD最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ACB、△AED都為等腰直角三角形,∠AED=∠ACB=90°,點(diǎn)D在AB上,連CE,M、N分別為BD、CE的中點(diǎn).
(1)求證:MN⊥CE;
(2)如圖2將△AED繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°,求證:CE=2MN.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com