【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,點(diǎn)O關(guān)于直線CD的對稱點(diǎn)為E,連接DE,CE.
(1)求證:四邊形ODEC為菱形;
(2)連接OE,若BC=2,求OE的長.
【答案】(1)詳見解析;(2)
【解析】
(1)利用矩形性質(zhì)可得OD=OC,再借助對稱性可得OD=DE=EC=CO,從而證明了四邊形ODEC為菱形;
(2)證明四邊形OBCE為平行四邊形,即可得到OE=BC=2.
(1)∵四邊形ABCD是矩形,
∴AC=BD,OC=AC,OB=OD=BD,
∴OD=OC.
∵點(diǎn)O關(guān)于直線CD的對稱點(diǎn)為E,
∴OD=ED,OC=EC.
∴OD=DE=EC=CO.
∴四邊形ODEC為菱形;
(2)連接OE.如圖,
由(1)知四邊形ODEC為菱形,
∴CE∥OD且CE=OD.
又∵OB=OD,
∴CE∥BO且CE=BO.
∴四邊形OBCE為平行四邊形.
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六張形狀大小完全相同的小長方形卡片,分兩種不同形式不重疊的放在一個底面長為m,寬為n的長方形盒子底部(如圖①、圖②),盒子底面未被卡片覆蓋的部分用陰影表示,設(shè)圖①中陰影圖形的周長為,圖②中兩個陰影部分圖形的周長和為 則用含m、n的代數(shù)式=_______,=_______,若,則m=_____(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;
②過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【背景】已知:l∥m∥n∥k,平行線l與m、m與n、n與k之間的距離分別為d1,d2,d3,且d1=d3=1,d2=2.我們把四個頂點(diǎn)分別在l,m,n,k這四條平行線上的四邊形稱為“格線四邊形” .
【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BE⊥l于點(diǎn)E,BE的反向延長線交直線k于點(diǎn)F.求正方形ABCD的邊長.
【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AE⊥k于點(diǎn)E,∠AFD=90°,直線DF分別交直線l,k于點(diǎn)G、點(diǎn)M.求證:EC=DF.
【拓展】(3)如圖3,l∥k,等邊△ABC的頂點(diǎn)A,B分別落在直線l,k上,AB⊥k于點(diǎn)B,且∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M,點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動點(diǎn),且始終保持AD=AE,DH⊥l于點(diǎn)H.猜想:DH在什么范圍內(nèi),BC∥DE?并說明此時BC∥DE的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個空調(diào)安裝隊(duì)分別為A、B兩個公司安裝空調(diào),甲安裝隊(duì)為A公司安裝66臺空調(diào),乙安裝隊(duì)為B公司安裝60臺空調(diào),甲、乙兩隊(duì)安裝空調(diào)所用的總時間相同.已知甲隊(duì)比乙隊(duì)平均每天多安裝2臺空調(diào),求甲、乙兩個安裝隊(duì)平均每天各安裝空調(diào)的臺數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張師傅開車到某地送貨,汽車出發(fā)前油箱中有油50升,行駛一段時間,張師傅在加油站加油,然后繼續(xù)向目的地行駛.已知加油前、后汽車都勻速行駛,汽車行駛時每小時的耗油量一定.油箱中剩余油量Q(升)與汽車行駛時間t(時)之間的函數(shù)圖象如圖所示.
(1)張師傅開車行駛________小時后開始加油,本次加油________升.
(2)求加油前Q與t之間的函數(shù)關(guān)系式.
(3)如果加油站距目的地210千米,汽車行駛速度為70千米/時,張師傅要想到達(dá)目的地,油箱中的油是否夠用?請通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”n的各個數(shù)位上的數(shù)字之和記為F(n).例如n=135時,F(135)=1+3+5=9.
(1)對于“相異數(shù)”n,若F(n)=6,請你寫出一個n的值;
(2)若a,b都是“相異數(shù)”,其中a=100x+12,b=350+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當(dāng)F(a)+F(b)=18時,求k的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(3a,2a)在第一象限,過點(diǎn)A向x軸作垂線,垂足為點(diǎn)B,連接OA,S△AOB=12,點(diǎn)M從O出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運(yùn)動,點(diǎn)N從點(diǎn)B出發(fā)以每秒3個單位長度的速度向x軸負(fù)方向運(yùn)動,點(diǎn)M與點(diǎn)N同時出發(fā),設(shè)點(diǎn)M的運(yùn)動時間為t秒,連接AM,AN,MN.
(1)求a的值;
(2)當(dāng)0<t<2時,
①請?zhí)骄俊?/span>ANM,∠OMN,∠BAN之間的數(shù)量關(guān)系,并說明理由;
②試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由。
(3)當(dāng)OM=ON時,請求出t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在¨ABCD中,過點(diǎn)D作DE⊥AB與點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com