【題目】某中學(xué)決定在本校學(xué)生中開展足球、籃球、羽毛球、乒乓球四種活動(dòng),為了了解學(xué)生對(duì)這四種活動(dòng)的喜愛情況,學(xué)校隨機(jī)調(diào)查了該校m名學(xué)生,看他們喜愛哪一種活動(dòng)(每名學(xué)生必選一種且只能從這四種活動(dòng)中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中的信息,解答下列問題.
(1)m= ,n= ;
(2)請(qǐng)補(bǔ)全圖中的條形圖;
(3)扇形統(tǒng)計(jì)圖中,足球部分的圓心角是 度;
(4)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校1800名學(xué)生中,大約有多少人喜愛踢足球.
【答案】(1) 100,15 (2)見解析 (3)144° (4)720人
【解析】分析:(1)根據(jù)喜愛乒乓球的有10人,占10%可以求得m的值,從而可以求得n的值;
(2)根據(jù)題意和m的值可以求得喜愛籃球的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到足球部分的百分比,即可得到足球部分的圓心角度數(shù);
(4)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以估算出全校1800名學(xué)生中,大約有多少人喜愛踢足球;
詳解:(1)由題意可得:m=10÷10%=100,n%=15÷100=15%.
故答案為:100,15;
(2)喜愛籃球的有:100×35%=35(人),補(bǔ)全的條形統(tǒng)計(jì)圖,如圖所示:
(3)扇形統(tǒng)計(jì)圖中,足球部分的圓心角是360°×=144°;
故答案為:144;
(4)由題意可得:全校1800名學(xué)生中,喜愛踢足球的有:1800×=720(人).
答:全校1800名學(xué)生中,大約有720人喜愛踢足球.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把順序連結(jié)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
(1)任意四邊形的中點(diǎn)四邊形是什么形狀?為什么?
(2)符合什么條件的四邊形,它的中點(diǎn)四邊形是菱形?
(3)符合什么條件的四邊形,它的中點(diǎn)四邊形是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計(jì)劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):
(1)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛?
(2)該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)20元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF,在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=﹣x﹣4與x軸交于點(diǎn)A、B,與y 軸相交于點(diǎn)C.
(1)求直線BC的解析式;
(2)將直線BC向上平移后經(jīng)過點(diǎn)A得到直線l:y=mx+n,點(diǎn)D在直線l上,若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,將ABCD放置在第一象限,且AB∥x軸,直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長(zhǎng)度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2,那么ABCD面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖 ,∠AOB=∠COD=90°
①∠AOD=30°求∠BOC
②若∠AOD=α求用α的代數(shù)式表示∠BOC.
(2)如圖2,若∠AOB=∠COD=60°,直接寫出∠AOC與∠BOD的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c(b,c都是常數(shù))的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2≤x≤2時(shí),求y的取值范圍.
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m+n=1,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com