【題目】如圖,平面直角坐標(biāo)系中,軸正半軸上一點(diǎn),連接,在第一象限作, ,過點(diǎn)作直線軸于,直線與直線交于點(diǎn),且,則直線解析式為____________

【答案】

【解析】

A作AM⊥y軸,交y軸于M,交CDN,根據(jù)∠BMA=ANC=90°,∠BAC=90°可以得到∠ABM=∠CAN,再根據(jù)A點(diǎn)坐標(biāo)可以得出OM=DN=AM=4,求出△ABM≌△CAN,根據(jù)全等的性質(zhì)求出AN=BM,CN=4,再根據(jù)ED=5ECE在直線y=x上求出E的坐標(biāo),即可求出MN=10,CD=8,AN=BM=MN-AM=6的值,得出C10,8),B0,10)代入y=kx+b中,即可求出.

解:過軸,交軸于,交,則,

,

,

,,

中,

,

,

,,

設(shè),

,

點(diǎn)在直線上,

,

,

,即,

點(diǎn)在直線上,

,

,

,

,

設(shè)直線的解析式是

代入得:,

即直線的解析式是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從愛國(guó)”“敬業(yè)”“誠(chéng)信”“友善四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,選擇愛國(guó)主題所對(duì)應(yīng)的圓心角是多少;

(4)如果該校九年級(jí)共有1200名學(xué)生,請(qǐng)估計(jì)選擇以友善為主題的九年級(jí)學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司推出①,②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x()與費(fèi)用y()之間的函數(shù)關(guān)系如圖所示.

(1)有月租的收費(fèi)方式是________(”),月租費(fèi)是________元;

(2)分別求出①,②兩種收費(fèi)方式中y與自變量x之間的函數(shù)表達(dá)式;

(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AGDBCB的延長(zhǎng)線于G.

(1)求證:四邊形AGBD為平行四邊形;

(2)若四邊形AGBD是矩形,則四邊形BEDF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點(diǎn)ED,DF是圓的切線,過點(diǎn)FBC的垂線交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D、E分別在BCAC上,且CD=AE,ADBE相交于P,BQADQ.

1)求證:;

2)若PQ=4,PE=1,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE

(1)求證:△ABC≌△CDE

(2)試判斷AC與CE的位置關(guān)系,并說明理由.

(3)若將CD沿CB方向平移得到圖②的情形,其余條件不變,此時(shí)第(2)問中AC與CE的位置關(guān)系還成立嗎?請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案