【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h(甲車休息前后的速度相同),甲、乙兩車行駛的路程y(km)與行駛的時間x(h)的函數(shù)圖象如圖所示.根據(jù)圖象的信息有如下四個說法:①甲車行駛40千米開始休息②乙車行駛3.5小時與甲車相遇③甲車比乙車晚2.5小時到到B地④兩車相距50km時乙車行駛了小時,其中正確的說法有( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】A
【解析】
根據(jù)“路程÷時間=速度”由函數(shù)圖象就可以求出甲的速度,求出a的值和m的值解答①;根據(jù)函數(shù)圖象可得乙車行駛3.5-2=1小時與甲車相遇解答②;再求出甲、乙車行駛的路程y與時間x之間的解析式解答③;由解析式之間的關(guān)系建立方程解答④.
由題意,得m=1.5-0.5=1,
120÷(3.5-0.5)=40(km/h),
則a=40,
∴甲車行駛40千米開始休息,
故①正確;
根據(jù)函數(shù)圖象可得乙車行駛3.5-2=1.5小時與甲車相遇,故②錯誤;
當(dāng)0≤x≤1時,設(shè)甲車y與x之間的函數(shù)關(guān)系式為y=k1x,
由題意,得:40=k1,
則y=40x,
當(dāng)1<x≤1.5時,y=40;
當(dāng)1.5<x≤7時,設(shè)甲車y與x之間的函數(shù)關(guān)系式為y=k2x+b,
由題意,得: ,
解得:,
則y=40x-20;
設(shè)乙車行駛的路程y與時間x之間的解析式為y=k3x+b3,
由題意,得:,
解得:,
則y=80x-160;
當(dāng)40x-20-50=80x-160時,解得:x=,
當(dāng)40x-20+50=80x-160時,解得:x=,
-2=,-2=,
所以乙車行駛小時或小時,兩車恰好相距50km,
故④錯誤;
當(dāng)1.5<x≤7時,甲車y與x之間的函數(shù)關(guān)系式為y=40x-20,
當(dāng)y=260時,260=40x-20,
解得:x=7,
乙車行駛的路程y與時間x之間的解析式為y=80x-160,
當(dāng)y=260時,260=80x-160,
解得:x=5.25,
7-5.25=1.75(小時)
∴甲車比乙車晚1.75小時到到B地,
故③錯誤;
∴正確的只有①,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數(shù).
②若⊙O的半徑為2 ,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解全校3000名學(xué)生對學(xué)校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名學(xué)生.對他們最喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將數(shù)據(jù)進行了統(tǒng)計并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).
(1)在這次問卷調(diào)查中,一共抽查了多少名學(xué)生?
(2)補全條形統(tǒng)計圖;
(3)求“球類”所對應(yīng)的扇形的圓心角度數(shù);
(4)估計該校3000名學(xué)生中有多少人最喜愛球類活動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)這四個班共植樹棵;
(2)請你在答題卡上補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應(yīng)的扇形圓心角的度數(shù);
(4)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線l是由函數(shù)y= 在第一象限內(nèi)的圖象繞坐標(biāo)原點O逆時針旋轉(zhuǎn)45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上的任意一點,過點A作 AB∥x軸,交另一個比例函數(shù)y2= (k<0,x<0)的圖象于點B.
(1)若S△AOB的面積等于3,則k是=;
(2)當(dāng)k=﹣8時,若點A的橫坐標(biāo)是1,求∠AOB的度數(shù);
(3)若不論點A在何處,反比例函數(shù)y2= (k<0,x<0)圖象上總存在一點D,使得四邊形AOBD為平行四邊形,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com