【題目】某水果批發(fā)商場經銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

【答案】
(1)解:設每千克應漲價x元,則(10+x)(500﹣20x)=6 000

解得x=5或x=10,

為了使顧客得到實惠,所以x=5

答:要保證每天盈利6000元,同時又使顧客得到實惠,那么每千克應漲價5元


(2)解:設漲價z元時總利潤為y,

則y=(10+z)(500﹣20z)

=﹣20z2+300z+5 000

=﹣20(z2﹣15z)+5000

=﹣20(z2﹣15z+ )+5000

=﹣20(z﹣7.5)2+6125

當z=7.5時,y取得最大值,最大值為6 125

答:若該商場單純從經濟角度看,每千克這種水果漲價7.5元,能使商場獲利最多


【解析】本題的關鍵是根據(jù)題意列出一元二次方程,再求其最值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:a+b=1.5,ab=﹣1,則(a﹣2)(b﹣2)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)某班數(shù)學興趣小組對函數(shù)的圖像和性質進行了探究,探究過程如下,請補充完整.

(1)自變量的取值范圍是全體實數(shù),的幾組對應值列表如下:

0

1

2

3

4

3

0

0

3

其中,=____________.

(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖像的一部分,請畫出該圖像的另一部分.

(3)觀察函數(shù)圖像,寫出兩條函數(shù)的性質:

(4)進一步探究函數(shù)圖像發(fā)現(xiàn):

函數(shù)圖像與軸有__________個交點,所以對應方程有___________個實數(shù)根;

方程有___________個實數(shù)根;

關于的方程有4個實數(shù)根,的取值范圍是_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查適合用普查的是(

A. 長江中現(xiàn)有魚的種類 B. 某品牌燈泡的使用壽命 C. 夏季冷飲市場上冰淇淋的質量 D. 航天飛機的零件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)在Rt中, 是方程的根.

(1)求的值;

(2)如圖(2),有一個邊長為的等邊三角形出發(fā),以1厘米每秒的速度沿方向移動,至全部進入與為止,設移動時間為xs, 重疊部分面積為y,試求出y與x的函數(shù)關系式并注明x的取值范圍;

(3)試求出發(fā)后多久,點在線段上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,增加下列條件后,ABCD不一定是菱形的是(

A.DC=BC
B.AC⊥BD
C.AB=BD
D.∠ADB=∠CDB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),將線段AB先向上平移2個單位長度,再向右平移1個單位長度,得到線段CD,連接AC,BD,構成平行四邊形ABDC.

(1)請寫出點C的坐標為 , 點D的坐標為 , S四邊形ABDC;
(2)點Q在y軸上,且SQAB=S四邊形ABDC , 求出點Q的坐標;
(3)如圖(2),點P是線段BD上任意一個點(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案