【題目】已知:a+b=1.5,ab=﹣1,則(a﹣2)(b﹣2)=

【答案】0
【解析】解:∵a+b=1.5,ab=﹣1,
∴(a﹣2)(b﹣2)
=ab﹣2(a+b)+4
=﹣1﹣3+4
=0.
所以答案是:0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Aa , 2013)與點(diǎn)A′(-2014,b)是關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),則a+b的值為( 。
A.1
B.5
C.6
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,B為切點(diǎn),OC平行于弦AD,連接CD。過點(diǎn)D作DE⊥AB于E,交AC于點(diǎn)P,求證:點(diǎn)P平分線段DE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x+3|+(5﹣y)2=0,則x+y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(2m+4,3m+3)在x軸上,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O的半徑為3,圓心O到直線l的距離為3,直線l與⊙O的位置關(guān)系是(

A. 相交B. 相切C. 相離D. 相交或相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是平行四邊形.直線L經(jīng)過O、C兩點(diǎn).點(diǎn)A的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(11,4),動(dòng)點(diǎn)P在線段OA上從點(diǎn)O出發(fā)以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿A→B→C的方向向點(diǎn)C運(yùn)動(dòng),過點(diǎn)PPM垂直于x軸,與折線OC﹣B相交于點(diǎn)M.當(dāng)Q、M兩點(diǎn)相遇時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).MPQ的面積為S.

(1)點(diǎn)C的坐標(biāo)為 ,直線L的解析式為

(2)試求點(diǎn)Q與點(diǎn)M相遇前St的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍.

(3)試求題(2)中當(dāng)t為何值時(shí),S的值最大,并求出S的最大值.

(4)隨著P、Q兩點(diǎn)的運(yùn)動(dòng),當(dāng)點(diǎn)M在線段CB上運(yùn)動(dòng)時(shí),設(shè)PM的延長線與直線L相交于點(diǎn)N.試探究:當(dāng)t為何值時(shí),QMN為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,若∠A+∠C=120°,則∠A=________,∠B=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場獲利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案