已知:如圖所示,P為⊙O外一點,PA切⊙O于A,從PA中點M引⊙O割線MNB,∠PNA=138°.求∠PBA的度數(shù).

答案:
解析:

42°.

∠ABM=∠NAM.于是顯然△ABM∽△NAM,

所以, △PMB∽△NMP,從而∠PBM=∠NPM.再由∠ABM=∠NAM,就有

∠PBA=∠PBM+∠NAM=∠NPM+∠NAM

=180°-∠PNA=42°.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,BC為圓O的直徑,A、F是半圓上異于B、C的一點,D是BC上的一點,BF交AH于點E,精英家教網A是弧BF的中點,AH⊥BC.
(1)求證:AE=BE;
(2)如果BE•EF=32,AD=6,求DE、BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•孝南區(qū)一模)已知,如圖所示,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交于⊙O于點E,∠BAC=45°,給出以下四個結論:
①BD=CD;②∠EBC=22.5°;③AE=2EC;④
AE
=2
DE
AE
DE
為劣。
其中正確結論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,E為正方形ABCD外一點,AE=AD,∠ADE=75°,則∠AEB=
30°
30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖所示,BC為圓O的直徑,A、F是半圓上異于B、C的一點,D是BC上的一點,BF交AH于點E,A是弧BF的中點,AH⊥BC.
(1)求證:AE=BE;
(2)如果BE•EF=32,AD=6,求DE、BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖所示,△ABC為任意三角形,若將△ABC繞點C順時針旋轉180°得到△DEC.
(1)試猜想AE與BD有何關系?說明理由;
(2)請給△ABC添加一個條件,使旋轉得到的四邊形ABDE為矩形,并說明理由.

查看答案和解析>>

同步練習冊答案