【題目】如圖,已知正方形ABCD的邊長為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)PAB邊上一動點(diǎn),連接PD,PE,則PD+PE的長度最小值為_____

【答案】44

【解析】

根據(jù)正方形的性質(zhì)得到∠ABC90°,推出∠BEC90°,得到點(diǎn)E在以BC為直徑的半圓上移動,如圖,設(shè)BC的中點(diǎn)為O,作正方形ABCD關(guān)于直線AB對稱的正方形AFGB,則點(diǎn)D的對應(yīng)點(diǎn)是F,連接FOABP,交OE,則線段EF的長即為PD+PE的長度最小值,根據(jù)勾股定理即可得到結(jié)論.

解:∵四邊形ABCD是正方形,

∴∠ABC90°,

∴∠ABE+CBE90°,

∵∠ABE=∠BCE,

∴∠BCE+CBE90°,

∴∠BEC90°,

∴點(diǎn)E在以BC為直徑的半圓上移動,

如圖,設(shè)BC的中點(diǎn)為O,作正方形ABCD關(guān)于直線AB對稱的正方形AFGB,則點(diǎn)D的對應(yīng)點(diǎn)是F,

連接FOABP,交半圓OE,則線段EF的長即為PD+PE的長度最小值,OE4,

∵∠G90°,FGBGAB8,

OG12

OF4,

EF44,

PD+PE的長度最小值為44

故答案為:44

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,四個(gè)內(nèi)角平分線相交于E、F、G、H。求證:四邊形EFGH是矩形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線x軸、y軸分別交于點(diǎn)A和點(diǎn)B0,-1),拋物線經(jīng)過點(diǎn)B,且與直線l的另一個(gè)交點(diǎn)為C4n).

1)求n的值和拋物線的解析式;

2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為t0<t<4),DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2).若矩形DFEG的周長為p,求pt的函數(shù)關(guān)系式以及p的最大值;

3M是平面內(nèi)一點(diǎn),將AOB繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,得到A'O'B',點(diǎn)A、OB的對應(yīng)點(diǎn)分別是點(diǎn)A'、O'、B' A'O'B'的兩個(gè)頂點(diǎn)恰好落在拋物線上,請直接寫出點(diǎn)A的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于、兩點(diǎn),拋物線經(jīng)過點(diǎn)

1)求該拋物線的函數(shù)表達(dá)式:

2)已知點(diǎn)是拋物線上的一個(gè)動點(diǎn),并且點(diǎn)在第一象限內(nèi),連接、,設(shè)點(diǎn)的橫坐標(biāo)為的面積為,求的函數(shù)表達(dá)式,并求出的最大值;

3)在(2)的條件下,當(dāng)取得最大值時(shí)動點(diǎn)相應(yīng)的位置記為點(diǎn),寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是圓O直徑CA延長線上的一點(diǎn),PB切圓O于點(diǎn)B,點(diǎn)D是圓上的一點(diǎn),連接AB,AD,BDCD,∠P=30°.

1)求證:PB=BC

2)若AD=6,tanDCA=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形, ,垂足為的延長線相交于,,連接;

(1)如圖,求證:四邊形是菱形;

(2)如圖,連接,,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時(shí),第二次是陽光與地面成30°角時(shí),兩次測量的影長相差8米,則樹高_____________(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;

(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計(jì)算說明這輛貨車能否安全通過這條隧道.

查看答案和解析>>

同步練習(xí)冊答案