甲、乙兩人連續(xù)6年對(duì)某縣農(nóng)村鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模(總產(chǎn)量)進(jìn)行調(diào)查,提供了兩個(gè)方面的信息,分別得到甲、乙兩圖:甲調(diào)查表明:每個(gè)魚(yú)池平均產(chǎn)量從第1年1萬(wàn)只鰻魚(yú)上升到第6年2萬(wàn)只.乙調(diào)查表明:全縣魚(yú)池總個(gè)數(shù)由第1年30個(gè)減少到第6年10個(gè).
請(qǐng)你根據(jù)提供的信息說(shuō)明:
(1)第2年全縣魚(yú)池的個(gè)數(shù)及全縣出產(chǎn)的鰻魚(yú)總數(shù);
(2)第6年這個(gè)縣的鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模(即總產(chǎn)量)比第1年擴(kuò)大了還是縮小了?請(qǐng)說(shuō)明理由;
(3)哪一年(取整數(shù))的規(guī)律(即總產(chǎn)量)最大?請(qǐng)說(shuō)明理由.
由題意可知,圖甲圖象經(jīng)過(guò)(1,1)和(6,2)兩點(diǎn),
將兩點(diǎn)代入y=ax+b得:
a+b=1
6a+b=2

解得:
a=0.2
b=0.8
,
從而求得其解析式為y=0.2x+0.8,
圖乙圖象經(jīng)過(guò)(1,30)和(6,10)兩點(diǎn).
將兩點(diǎn)代入y=kx+c得:
k+c=30
6k+c=30
,
解得:
k=-4
c=34
,
從而求得其解析式為y=-4x+34.
(1)當(dāng)x=2時(shí),y=0.2×2+0.8=1.2,
y=-4×2+34=26,
y×y=1.2×26=31.2.
所以第2年魚(yú)池有26個(gè),全縣出產(chǎn)的鰻魚(yú)總數(shù)為31.2萬(wàn)條.

(2)第1年出產(chǎn)鰻魚(yú)1×30=30(萬(wàn)條),第6年出產(chǎn)鰻魚(yú)2×10=20(萬(wàn)條),
可見(jiàn)第6年這個(gè)縣的鰻魚(yú)養(yǎng)殖業(yè)規(guī)劃比第1年縮小了.

(3)設(shè)當(dāng)?shù)趍年時(shí)的規(guī)模,即總出產(chǎn)是量為n,
那么n=y•y=(0.2m+0.8)(-4m+34)
=-0.8m2+3.6m+27.2
=-0.8(m2-4.5m-34)
=-0.8(m-2.25)2+31.25
因此,當(dāng)m=2時(shí),n最大值為31.2.
即當(dāng)?shù)?年時(shí),鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模最大,最大產(chǎn)量為31.2萬(wàn)條.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
4
5
x2+
24
5
x-4與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過(guò)點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.
(1)求點(diǎn)A,B的坐標(biāo)(直接寫(xiě)出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由;
(3)若將“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx-c經(jīng)過(guò)直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),求使S△APC:S△ACD=5:4的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).設(shè)拋物線的頂點(diǎn)為D,求解下列問(wèn)題:
(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)D作DFy軸,交直線BC于點(diǎn)F,求線段DF的長(zhǎng),并求△BCD的面積;
(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫(xiě)出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用甲、乙兩種原料配制成一種飲料,已知兩種原料中的維生素C和維生素E及購(gòu)買(mǎi)這兩種原料的價(jià)格如下表:
甲種原料乙種原料
維生素C含量(單位/千克)600100
維生素E含量(單位/千克)300500
原料價(jià)格(元/千克)155
(1)現(xiàn)配制這種飲料10千克,要求至少含有4200單位維生素C和330單位維生素E,設(shè)需要甲種原料x(chóng)千克)(x是整數(shù)),則如何配制既符合要求又成本最低,此時(shí)每千克的最低成本是多少?
(2)按照(1)中最低成本配制的飲料售價(jià)定為每瓶8元(0.5千克每瓶),每天可售出80瓶,若售價(jià)每上漲0.5元,則每天可少售出10瓶,問(wèn)定價(jià)多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=ax2的圖象過(guò)(2,1),則二次函數(shù)的表達(dá)式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

蔬菜基地種植的某種蔬菜,根據(jù)今年的市場(chǎng)行情,預(yù)計(jì)從3月1日起的50天內(nèi),它的市場(chǎng)售價(jià)y1(萬(wàn)元)與上市時(shí)間x的關(guān)系可用圖(1)中的一條折線表示;他的種植成本y2(萬(wàn)元)與上市時(shí)間x的關(guān)系可用力(2)中的拋物線的一部分來(lái)表示.若市場(chǎng)售價(jià)減去種植成本為純利潤(rùn)

(1)求y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)哪天上市這種綠色蔬菜既不賠本也不賺錢(qián)?
(3)哪天上市的蔬菜的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某塑料大棚的截面如圖所示,曲線部分近似看作拋物線.現(xiàn)測(cè)得AB=6米,最高點(diǎn)D到地面AB的距離DO=2.5米,點(diǎn)O到墻BC的距離OB=1米.借助圖中的直角坐標(biāo)系,回答下列問(wèn)題:
(1)寫(xiě)出點(diǎn)A,B的坐標(biāo);
(2)求墻高BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案