【題目】閱讀與理解:

如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網格線爬行.若我們規(guī)定:在如圖網格中,向上(或向右)爬行記為“+”,向下(或向左)爬行記為,并且第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

例如:從AB記為:AB+1+4),從DC記為:DC(﹣1+2).

思考與應用:

1)圖中BC , CD  ,  

2)若甲蟲從AP的行走路線依次為:(+3,+2+1+3+1,﹣2),請在圖中標出P的位置.

3)若甲蟲的行走路線為A+1+4+20+1,﹣2(﹣4,﹣2),請計算該甲蟲走過的總路程S

【答案】1+20,+1,﹣2;(2)若甲蟲從AP的行走路線依次為:AEFP,圖中P的即為所求.見解析;(3)甲蟲走過的總路程為16

【解析】

1BC只向右走3格;CD先向右走1格,再向下走2格,由此寫出即可.

2)由(+3,+2+1,+3+1,﹣2)可知從A處右移3格,上移2格,再右移1格,上移3格,右移1格,下移2格即是甲蟲P處的位置;

3)由A+1+4+2,0+1,﹣2(﹣4,﹣2)知:先向右移動1格,向上移動4格,向右移動2格,再向右移動1格,向下移動2格,最后向左移動4格,向下移動2格,把移動的距離相加即可.

1)圖中BC+2.0),CD+1,﹣2).

故答案為:+2,0,+1,﹣2

2)若甲蟲從AP的行走路線依次為:AEFP,圖中P的即為所求.

3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),

甲蟲走過的總路程S1+4+2+1+2+4+216

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,GCD邊上的一個動點(點GC、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.

(1)①猜想圖1中線段BG、線段DE的長度關系及所在直線的位置關系,不必證明;

②將圖1中的正方形CEFG繞著點C按順時針方向旋轉任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并證明你的判斷.

(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖4為例簡要說明理由.

(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離(米)與甲出發(fā)的時間(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙用16分鐘追上甲;③乙走完全程用了30分鐘;④乙到達終點時甲離終點還有360米.其中正確的結論有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如表是一個4×4(44列共16數(shù)組成)的奇妙方陣,從這個方陣中選四個數(shù),而且這四個數(shù)中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個數(shù)相加,其和是定值,則方陣中第三行三列的數(shù)是( 。

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級兩個班各選派10名學生參加垃圾分類知識競賽,各參賽選手的成績如下:

八(1)班:88,91,9293,9393,94,98,98,100;

八(2)班:89,93,93,93,95,96,9698,9899

通過整理,得到數(shù)據(jù)分析表如下

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)求表中,的值;

2)依據(jù)數(shù)據(jù)分析表,有同學認為最高分在(1)班,(1)班的成績比(2)班好.但也有同學認為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們把三角形被一邊中線分成的兩個三角形叫做友好三角形”.

性質:如果兩個三角形是友好三角形,那么這兩個三角形的面積相等.

理解:如圖①,在△ABC中,CDAB邊上的中線,那么△ACD和△BCD友好三角形,并且SACD=SBCD

應用:如圖②,在矩形ABCD中,AB=4,BC=6,點EAD上,點FBC上,AE=BF,AFBE交于點O.

(1)求證:△AOB和△AOE友好三角形”;

(2)連接OD,若△AOE和△DOE友好三角形,求四邊形CDOF的面積.

探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,ACD和△BCD友好三角形,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A、B、C分別表示三個村莊,AB=1000米,BC=600米,AC=800米,在社會主義新農村建設中,為了豐富群眾生活,擬建一個文化活動中心,要求這三個村莊到活動中心的距離相等,則活動中心P的位置應在(

AAB中點 B.BC中點 C AC中點 DC的平分線與AB的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程2x﹣3﹣m=2的解和方程3x﹣7=2x的解相同.

1)求m的值;

2)已知線段AB=m,在直線AB上取一點P,恰好使AP=2PB,點QPB的中點,求線段AQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀材料:如圖(1),在數(shù)軸上示的數(shù)為,點表示的數(shù)為,則點到點的距離記為.線段的長可以用右邊的數(shù)減去左邊的數(shù)表示,即.

解決問題:如圖(2),數(shù)軸上點表示的數(shù)是-4,點表示的數(shù)是2,點表示的數(shù)是6.

1)若數(shù)軸上有一點,且,則點表示的數(shù)為 ;

2)點、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,若點和點分別以每秒2個單位長度和3個單位長度的速度向右運動,假設秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為.則點表示的數(shù)是 (用含的代數(shù)式表示), (用含的代數(shù)式表示).

3)請問:的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

同步練習冊答案