【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的長;
(3)如圖3,在△ADE中,當(dāng)BD垂直平分AE于H,且∠BAC=2∠ADB時(shí),試探究CD2,BD2,AH2之間的數(shù)量關(guān)系,并證明.
【答案】(1)證明見解析;(2)5;(3)CD2=BD2+4AH2.證明見解析.
【解析】(1)、根據(jù)∠DAE=∠BAC得出∠DAC=∠BAE,結(jié)合已知條件得出△ACD和△ABE全等,從而得出答案;(2)、連接BE,根據(jù)中垂線的性質(zhì)以及∠DAE=60°得出△ADE是等邊三角形,根據(jù)△ABE和△ACD全等得出答案;(3)、過B作BF⊥BD,且BF=AE,連接DF,則四邊形ABFE是平行四邊形,設(shè)∠AEF=x,∠AED=y,則∠FED=x+y,然后證明△ACD和△EFD全等,得出CD=DF,然后根據(jù)BD2+BF2=DF2得出答案.
(1)、如圖1,證明:∵∠DAE=∠BAC,∴∠DAE+∠CAE=∠BAC+∠CAE,
即∠DAC=∠BAE.∴△ACD≌△ABE(SAS),∴CD=BE;
(2)、連接BE,∵CD垂直平分AE∴AD=DE,∵∠DAE=60°,∴△ADE是等邊三角形,
∴∠CDA=∠ADE=×60°=30°,∵△ABE≌△ACD,
∴BE=CD=4,∠BEA=∠CDA=30°,∴BE⊥DE,DE=AD=3, ∴BD=5;
(3)、如圖,過B作BF⊥BD,且BF=AE,連接DF,則四邊形ABFE是平行四邊形,
∴AB=EF,設(shè)∠AEF=x,∠AED=y,則∠FED=x+y,
∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,
∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y=x+y,
∴∠FED=∠CAD,∴△ACD≌△EFD(SAS),∴CD=DF,
而BD2+BF2=DF2, ∴CD2=BD2+4AH2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖①),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.
(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績較好.
(4)如果該教育局要組織8人的代表隊(duì)參加市級(jí)團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程組 的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)在a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E為BC邊的中點(diǎn),連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對(duì)角線BD上,點(diǎn)E為折痕與邊CD的交點(diǎn),若AB=5,BC=12,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉興市2010~2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)求嘉興市2010~2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).
(2)求嘉興市近三年(2012~2014年)的社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).
(3)用適當(dāng)?shù)姆椒A(yù)測嘉興市2015年社會(huì)消費(fèi)品零售總額(只要求列出算式,不必計(jì)算出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com