【題目】如圖,四邊形中,,,,將繞著點順時針旋轉 ,連接 ,

1)求證:;

2)求證:

3)若,點在四邊形內(nèi)部運動,且滿足,求點運動路徑的長度.

【答案】1)詳見解析;(2)詳見解析;(3

【解析】

1)根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出

2)根據(jù)四邊形的內(nèi)角和和全等三角形的性質(zhì)可得,從而求出∠CBE=90°,根據(jù)勾股定理可得,根據(jù)等邊三角形的判定及性質(zhì)可得,從而證出結論;

3)如圖,設為滿足條件的點,將繞著點順時針旋轉60度得,連接,,

,, DB,先利用SAS證出,從而得出,∠AQD=AFB,然后證出為等邊三角形,△ADB為等邊三角形,從而得出, DB=AB=2,然后根據(jù)勾股定理的逆定理可得,根據(jù)四點共圓證出點的路徑為過、、三點的圓上,求出圓心角和半徑即可求出點運動路徑的長度.

證明:(1)∵

2)在四邊形

,

又∵,

∴△AEC為等邊三角形

3)如圖,設為滿足條件的點,將繞著點順時針旋轉60度得,連接,

,,, DB

,∠AQD=AFB,

,AQ=AF,∠DAB=60°,AD=AB

為等邊三角形,△ADB為等邊三角形

, DB=AB=2

∵∠BCD=30°

∴∠DQB+∠BCD=180°

∴點的路徑為過、、三點的圓上

設圓心為,連接OD、OB

∴△OBD為等邊三角形

,

∴點的運動的路徑長為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一家游泳館的游泳收費標準為30/次,若購買會員年卡,可享受如下優(yōu)惠:

會員年卡類型

辦卡費用(元)

每次游泳收費(元)

A

50

25

B

200

20

C

400

15

例如,購買A類會員年卡,一年內(nèi)游泳20次,消費50+25×20550元,若一年內(nèi)在該游泳館游泳的次數(shù)介于4050次之間,則最省錢的方式為(  )

A.購買A類會員卡B.購買B類會員年卡

C.購買C類會員年卡D.不購買會員年卡

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,點P在⊙O上,弦PBCD交于點F,且FC=FB.

(1)求證:PDCB;

(2)若AB=26,EB=8,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖(1),在中,點在線段上,,,,,求的長.經(jīng)過社團成員討論發(fā)現(xiàn):過點,交的延長線于點,通過構造就可以解決問題,如圖(2).請回答:______

2)求的長.

3)請參考以上解決思路,解決問題:如圖(3),在四邊形中,對角線相交于點,,,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點為長為5的線段上一點,且,過,且,以為鄰邊作矩形,將線段繞點B順時針旋轉,得到線段,優(yōu)弧,交,設旋轉角為

1)若扇形的面積為,則的度數(shù)為_______

2)連接,判斷與扇形所在圓的位置關系,并說明理由.

3)設為直線上一點,沿所在直線折疊矩形,若折疊后所在的直線與扇形所在的相切,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點在邊上,,.點是線段上一動點,當半徑為的一邊相切時,的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當x=1.7時,[x]+(x)+[x)=6;

②當x=-2.1時,[x]+(x)+[x)=-7

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當-1<x<1, 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個交點.

【答案】②③

【解析】分析:1)根據(jù)題目中給的計算方法代入計算后判定即可;(2)根據(jù)題目中給的計算方法代入計算后判定即可;(3)根據(jù)題目中給的計算方法代入計算后判定即可;(4)結合x的取值范圍,分類討論,利用題目中給出的方法計算后判定即可.

詳解:

x=1.7時,

[x]+x+[x

=[1.7]+1.7+[1.7=1+2+2=5,故錯誤;

x=﹣2.1時,

[x]+x+[x

=[﹣2.1]+﹣2.1+[﹣2.1

=﹣3+﹣2+﹣2=﹣7,故正確;

1x1.5時,

4[x]+3x+[x

=4×1+3×2+1

=4+6+1

=11,故正確;

④∵﹣1x1時,

當﹣1x﹣0.5時,y=[x]+x+x=﹣1+0+x=x﹣1,

當﹣0.5x0時,y=[x]+x+x=﹣1+0+x=x﹣1,

x=0時,y=[x]+x+x=0+0+0=0,

0x0.5時,y=[x]+x+x=0+1+x=x+1,

0.5x1時,y=[x]+x+x=0+1+x=x+1,

y=4x,則x1=4x時,得x=;x+1=4x時,得x=;當x=0時,y=4x=0,

當﹣1x1時,函數(shù)y=[x]+x+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故錯誤,

故答案為:②③

點睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結合x的取值范圍分情況討論即可.

型】填空
束】
19

【題目】先化簡再求值: ,其中, .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019115日,第二屆中國國際進口博覽會(The 2nd China International lmport Expo)在上海國家會展中心開幕.本次進博會將共建開放合作、創(chuàng)新共享的世界經(jīng)濟,見證海納百川的中國胸襟,詮釋兼濟天下的責任擔當.小滕、小劉兩人想到四個國家館參觀:.中國館;.俄羅斯館;.法國館;.沙特阿拉伯館.他們各自在這四個國家館中任意選擇一個參觀,每個國家館被選擇的可能性相同.

1)求小滕選擇.中國館的概率;

2)用畫樹狀圖或列表的方法,求小滕和小劉恰好選擇同一國家館的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BMAC于點M,CNAB于點N,PBC邊的中點,連接PMPN、MN,則下列結論:①PMPN;②;③若∠ABC60°,則△PMN為等邊三角形;④若∠ABC45°,則BNPC.其中正確的是( 。

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步練習冊答案