【題目】如圖,點A,B,C在一條直線上,△ABD,△BC均為等邊三角形,連接AE、CD,PN、BF下列結論:①△ABE≌△DBC;②∠DFA=60°;③△BPN為等邊三角形;④若∠1=∠2,則FB平分∠AFC.其中結論正確的有( 。
A. 4個B. 3個C. 2個D. 1個
【答案】A
【解析】
由等邊三角形的性質得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可證出△ABE≌△DBC;由△ABE≌△DBC,得出∠BAE=∠BDC,根據三角形外角的性質得出∠DFA=60°;由ASA證明△ABP≌△DBN,得出對應邊相等BP=BN,即可得出△BPN為等邊三角形;證明P、B、N、F四點共圓,由圓周角定理得出∠BFP=∠BFN,即FB平分∠AFC.
∵△ABD、△BCE為等邊三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBN=60°,
在△ABE和△DBC中,
,
∴△ABE≌△DBC(SAS),
∴①正確;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,
∴∠DFA=∠BAE+∠BCD=∠BDC+∠BCD=60°,
∴②正確;
在△ABP和△DBN中,
,
∴△ABP≌△DBN(ASA),
∴BP=BN,
∴△BPN為等邊三角形,
∴③正確;
∵∠DFA=60°,
∴∠AFC=120°,
∴∠AFC+∠PBN=180°,
∴P、B、N、F四點共圓,
∵BP=BN,
∴弧BP=弧BN,
∴∠BFP=∠BFN,
即FB平分∠AFC;
∴④正確;
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線(a≠0)與y軸交與點C(0,3),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點M從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點N從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設△MBN的面積為S,點M運動時間為t,試求S與t的函數關系,并求S的最大值;
(3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】雙曲線(k為常數,且)與直線交于兩點.
(1)求k與b的值;
(2)如圖,直線AB交x軸于點C,交y軸于點D,若點E為CD的中點,求△BOE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,點A(﹣2,2)和點B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關于y軸對稱的線段A′B′,并寫出點A、B的對稱點A′、B′的坐標;
(2)連接AA′和BB′,請在圖中畫一條線段,將圖中的四邊形AA′B′B分成兩個圖形,其中一個是軸對稱圖形,另一個是中心對稱圖形,并且線段的一個端點為四邊形的頂點,另一個端點在四邊形一邊的格點上.(每個小正方形的頂點均為格點).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在布袋中裝有兩個大小一樣,質地相同的球,其中一個為紅色,一個為白色、模擬“摸出一個球是白球”的機會,可以用下列哪種替代物進行實驗( 。
A. “拋擲一枚普通骰子出現1點朝上”的機會
B. “拋擲一枚啤酒瓶蓋出現蓋面朝上”的機會
C. “拋擲一枚質地均勻的硬幣出現正面朝上”的機會
D. “拋擲一枚普通圖釘出現針尖觸地”的機會
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥EF,DC⊥EF,垂足分別為B、C,且AB=CD,BE=CF.AF、DE相交于點O,AF、DC相交于點N,DE、AB相交于點M.
(1)請直接寫出圖中所有的等腰三角形;
(2)求證:△ABF≌△DCE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2經過點A(4,0),B(1,0).
(1)求出拋物線的解析式;
(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;
(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為O.以點C為圓心,BC為半徑作弧AB,過點O作AC的平行線交兩弧于點D、E,則陰影部分的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( 。
A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com