【題目】如圖,點(diǎn)A在線段BG上,四邊形ABCD和四邊形DEFG都是正方形,面積分別是1019,則△CDE的面積為_____________.

【答案】

【解析】

根據(jù)三角形的面積公式,已知邊CD的長,求出CD邊上的高即可.過EEHCD,易證ADGHDE全等,求得EH,進(jìn)而求CDE的面積.

EEHCD于點(diǎn)H

∵∠ADG+GDH=EDH+GDH

∴∠ADG=EDH

又∵DG=DE,DAG=DHE

∴△ADG≌△HDE

HE=AG

∵四邊形ABCD和四邊形DEFG都是正方形,面積分別是59.即AD2=5,DG2=9.

∴在直角ADG中,

AG=,

EH=AG=3.

∴△CDE的面積為CD·EH=××3=

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道L上確定點(diǎn)D,使CD與L垂直,測得CD的長等于24米,在L上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時(shí),若測得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與直線相交于點(diǎn).并且軸于點(diǎn),軸于點(diǎn).若平面上有一點(diǎn),構(gòu)成平行四邊形,請寫出點(diǎn)坐標(biāo)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB⊥AC,AD⊥BC,點(diǎn)D是BC的中點(diǎn),DE⊥AB,DF⊥AC,連接EF,則圖中等腰直角三角形的個(gè)數(shù)是( 。

A. 8個(gè) B. 10個(gè) C. 12個(gè) D. 13個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算
(1)2x(x+1)﹣(x+2)(x﹣2)+(x﹣1)2
(2)(x﹣1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連接DF,CF.

(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請直接寫出此時(shí)線段DF,CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);

(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC= ,求此時(shí)線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張三角形紙片ABC,其中∠C=90°,AC=4,BC=3.現(xiàn)小林將紙片做三次折疊:第一次使點(diǎn)A落在C處;將紙片展平做第二次折疊,使點(diǎn)B落在C處;再將紙片展平做第三次折疊,使點(diǎn)A落在B處.這三次折疊的折痕長依次記為a,b,c,則a,b,c的大小關(guān)系是( )
A.c>a>b
B.b>a>c
C.c>b>a
D.b>c>a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:

,,,.

其中說法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點(diǎn)C、B,與直線相交于點(diǎn)A.

(1)求A點(diǎn)坐標(biāo);

(2)如果在y軸上存在一點(diǎn)P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點(diǎn)坐標(biāo);

(3)在直線上是否存在點(diǎn)Q,使△OAQ的面積等于6?若存在,請求出Q點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案