【題目】如圖,拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線在軸下方上的動點,過點M作MN//軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取最大值時,在拋物線的對稱軸上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)(2,)、(2,)、(2,)、(2,)或(2,).
【解析】
試題分析:(1)由點B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)出點M的坐標(biāo)以及直線BC的解析式,由點B、C的坐標(biāo)利用待定系數(shù)法即可求出直線BC的解析式,結(jié)合點M的坐標(biāo)即可得出點N的坐標(biāo),由此即可得出線段MN的長度關(guān)于m的函數(shù)關(guān)系式,再結(jié)合點M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問題;
(3)假設(shè)存在,設(shè)出點P的坐標(biāo)為(2,n),結(jié)合(2)的結(jié)論可求出點N的坐標(biāo),結(jié)合點N、B的坐標(biāo)利用兩點間的距離公式求出線段PN、PB、BN的長度,根據(jù)等腰三角形的性質(zhì)分類討論即可求出n值,從而得出點P的坐標(biāo).
試題解析:(1)將點B(3,0)、C(0,3)代入拋物線中,得:,解得:,∴拋物線的解析式為;
(2)設(shè)點M的坐標(biāo)為(m,),設(shè)直線BC的解析式為y=kx+3,把點點B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直線BC的解析式為y=﹣x+3.∵MN∥y軸,∴點N的坐標(biāo)為(m,﹣m+3).∵拋物線的解析式為=,∴拋物線的對稱軸為x=2,∴點(1,0)在拋物線的圖象上,∴1<m<3.∵線段MN=﹣m+3﹣()==,∴當(dāng)m=時,線段MN取最大值,最大值為;
(3)假設(shè)存在.設(shè)點P的坐標(biāo)為(2,n).
當(dāng)m=時,點N的坐標(biāo)為(,),∴PB==,PN=,BN==.
△PBN為等腰三角形分三種情況:
①當(dāng)PB=PN時,即=,解得:n=,此時點P的坐標(biāo)為(2,);
②當(dāng)PB=BN時,即=,解得:n=±,此時點P的坐標(biāo)為(2,)或(2,);
③當(dāng)PN=BN時,即=,解得:n=,此時點P的坐標(biāo)為(2,)或(2,).
綜上可知:在拋物線的對稱軸l上存在點P,使△PBN是等腰三角形,點的坐標(biāo)為(2,)、(2,)、(2,)、(2,)或(2,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B(2,b)兩點,與y軸相交于點C.
(1)求m,n的值;
(2)若點D與點C關(guān)于x軸對稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點的點P,使得S△PAB=S△DAB?若存在,直接寫出P點坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是☉O的直徑,DC是☉O的切線,點C是切點,AD⊥DC,垂足為D,且與圓O相交于點E.
(1)求證:∠DAC=∠BAC.
(2)若☉O的直徑為5cm,EC=3cm,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BC和CD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的方格紙中,每個小正方形的邊長都是1,四邊形是平行四邊形,連結(jié)(點,,,均在格點上),請按要求完成下列作圖任務(wù).要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.
(1)在圖1中作的中位線,且;
(2)在圖2中取邊上點,以,為鄰邊作,且的面積等于的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購進一批電冰箱和空調(diào),每臺電冰箱的進價比每臺空調(diào)的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調(diào)的數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進價分別是多少?
(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準(zhǔn)備購進這兩種家電共100臺,其中購進電冰箱x臺(33≤x≤40),那么該商店要獲得最大利潤應(yīng)如何進貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,∠ABD = ∠ADB,分別以點B,D為圓心,AB長為半徑在BD的右側(cè)作弧,兩弧交于點C,連接BC,DC和AC,AC與BD交于點O.
(1)用尺規(guī)補全圖形,并證明四邊形ABCD為菱形;
(2)如果AB = 5,,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時,與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個根;③.其中,正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com