【題目】如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B(0,1),C(d,2).
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應點B′、C′正好落在某反比例函數(shù)圖象上. 請求出這個反比例函數(shù)和此時的直線B′C′的解析式.
【答案】(1)d=-3.(2)y=-x+3.
【解析】
(1)過C作CN垂直于x軸,交x軸于點N,由A、B及C的坐標得出OA,OB,CN的長,再證明Rt△CNA≌Rt△AOB,由∠CAB=90°,根據(jù)全等三角形的對應邊相等可得出CN=0A,AN=0B,由AN+OA求出ON的長,再由C在第二象限,可得出d的值;
(2)由第一問求出的C與B的橫坐標之差為3,根據(jù)平移的性質(zhì)得到縱坐標不變,故設出C′(m,2),則B′(m+3,1),再設出反比例函數(shù)解析式,將C′與B′的坐標代入得到關于k與m的兩方程,消去k得到關于m的方程,求出方程的解得到m的值,即可確定出k的值,得到反比例函數(shù)解析式,設直線B′C′的解析式為y=ax+b,將C′與B′的坐標代入,得到關于a與b的二元一次方程組,求出方程組的解得到a與b的值,即可確定出直線B′C′的解析式;
(1)如圖,作CN⊥x軸于點N,
在Rt△CNA和Rt△AOB中,
CN=AO=2,AC=AB,
∴Rt△CNA≌Rt△AOB(HL),
則AN=BO=1,
∴NO=AN+AO=3,且點C在第二象限,
∴d=-3.
(2)設反比例函數(shù)為y=,點C′和B′在該反比例函數(shù)圖象上,
設C′(m-3,2),則B′(m,1),
把點C′和B′的坐標分別代入y=,
得k=2m-6,k=m,
∴m=2m-6,
則k=6,m=6,
反比例函數(shù)解析式為y=.
得點C′(3,2),B′(6,1).
設直線C′B′的解析式為y=ax+b,
把C′、B′兩點坐標代入得3a+b=2,6a+b=1,
∴解得a=-,b=3,
∴直線C′B′的解析式為y=-x+3.
科目:初中數(shù)學 來源: 題型:
【題目】設A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點,則y1 , y2 , y3的大小關系為( )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,4),B(3,m)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y= (x>0)上的一動點,過A作AC⊥y軸,垂足為點C,作AC的垂直平分線交雙曲線于點B,交x軸于點D.當點A在雙曲線上從左到右運動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:
①逐漸變小;
②由大變小再由小變大;
③由小變大再由大變。
④不變.
你認為正確的是 . (填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OD平分∠AOF,OE⊥CD于點O,∠1=50°,求∠BOC、∠BOF的度數(shù).
解:∵OE⊥CD( ),
∴∠DOE=_____°( ),
∵∠1=50°( ),
∴∠AOD=∠________-∠________=________°,
∵∠BOC與∠AOD為_______角(____________),
∴∠BOC=∠________=∠_________°(_____________),
∵OD平分∠AOF(______________),
且∠AOD=____________°(______________),
∴∠AOF=2∠__________=________°( ),
∵∠BOF+∠AOF=______°( ),
∴∠BOF=______°-∠AOF=_________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“直角”在初中幾何學習中無處不在. 如圖,已知∠AOB,請仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖,EF//AD, =.求證:∠DGA+∠BAC=180°.請將說明過程填寫完成.
證明:∵EF//AD,(已知)
∴=_____(_____________________________).
又∵=(______)
∴=(________________________).
∴AB//______(____________________________)
∴∠DGA+∠BAC=180°(_____________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明從點O出發(fā),前進5m后向右轉15°,再前進5m后又向右轉15°,…這樣一直下去,直到他第一次回到出發(fā)點O為止,他所走的路徑構成了一個多邊形.
(1)小明一共走了多少米?
(2)這個多邊形的內(nèi)角和是多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com