【題目】如圖,拋物線 的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點M,使得△CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由;
(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由.
【答案】
(1)解:設拋物線的解析式為 ,
將C(0,1)代入得: ,
解得: ,
∴拋物線的解析式為: 即
(2)解: ①如圖1,當點C為直角頂點時,
∵點C的坐標為(0,1),
∴OD=OC=1,
∴點D的坐標為(1,0),
設直線CD為 ,則: ,解答 ,
∴直線CD的解析式為: ,
∵此時CM⊥CD,
∴CM的解析式為: ,
由: ,解得: , ,
∵點(0,1)與點C重合,
∴點M的坐標為(2,3),此時點M與點Q重合;
②如圖②,當D為直角頂點時,由①可得直線DM的解析式為 ,
由: ,解得: , ,
∴點M的坐標為為 或 ;
綜上所述,符合題意的M有三點,分別是(2 , 3 ), 或 .
(3)解:存在.如圖③所示,作點C關于直線QE的對稱點C′,作點C關于x軸的對稱點C″,連接C′C″,交OD于點F,交QE于點P,則△PCF即為符合題意的周長最小的三角形,由軸對稱的性質可知,△PCF的周長等于線段C′C″的長度.
如答圖④所示,連接C′E,
由(2)可知,QC⊥CD, 由題意可得:QC=QE,
∵∠DCE=45°,
∴∠QCE=45°=∠QEC,
∴△QCE是等腰直角三角形,
∵C,C′關于直線QE對稱,
∴△QC′E為等腰直角三角形,
∴△CEC′為等腰直角三角形,
∵在拋物線 中,由 解得 ,
∴點E的坐標為(4,1),
∴CE=4=C′E,
∴點C′的坐標為(4,5);
∵C,C″關于x軸對稱,
∴點C″的坐標為(0,﹣1).
∴OC″=1,
過點C′作C′N⊥y軸于點N,則NC′=CE=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″= .
綜上所述,在P點和F點移動過程中,△PCF的周長存在最小值,最小值為 .
【解析】(1)解析式可設為頂點式,再把C(0,1)代入解析式即可;(2)以CD為直角邊的直角三角形分為兩類,分別以C、D為直角頂點,可過C、D分別作CD的垂線,與拋物線相交,聯(lián)立直線和拋物線解析式組成方程組,可求出M坐標;(3)可利用對稱法作出C關于定直線QE的對稱點C',關于y軸對稱點為C",把△PCF的周長轉化為FC"+FP+PC',當C"、F、P、C'四點共線時,周長最小.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在□ABCD中,點E、F是AD、BC的中點,連接BE、DF.
(1)求證:BE=DF.
(2)若BE平分∠ABC且交邊AD于點E,AB=6cm,BC=10cm,試求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知點A(0,10),點P(m,10),連接AP、OP,將△AOP沿直線OP翻折得到△EOP(點A的對應點為點E).若點E到x軸的距離不大于6,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且經(jīng)A(1,0)、B(0,﹣3)兩點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上,是否存在點M,使它到點A的距離與到點B的距離之和最小,如果存在求出點M的坐標,如果不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點,連接DE,將△ADE繞點E旋轉180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個鋼筋三角架三邊長分別為20cm,50cm,60cm,現(xiàn)要再做一個與其相似的鋼筋三角架,而只有長為30cm和50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).
A. 一種 B. 兩種 C. 三種 D. 四種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學等式:_____________________;寫出由圖3所表示的數(shù)學等式:_____________________;
(2)利用上述結論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與應用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為 ,所以 ,從而 (當a=b時取等號).
閱讀2:函數(shù) (常數(shù)m>0,x>0),由閱讀1結論可知: ,所以當 即 時,函數(shù) 的最小值為 .
閱讀理解上述內容,解答下列問題:
(1)問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為 ,周長為 ,求當x=時,周長的最小值為 .
(2)問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當x=時, 的最小值為 .
(3)問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.01.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com