【題目】一個(gè)鋼筋三角架三邊長分別為20cm,50cm60cm,現(xiàn)要再做一個(gè)與其相似的鋼筋三角架,而只有長為30cm50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).

A. 一種 B. 兩種 C. 三種 D. 四種

【答案】B

【解析】

30cm的一根為一邊,利用相似三角形對(duì)應(yīng)邊成比例求出另兩邊的長度,計(jì)算它們的和,小于50cm就是可以的.

解:取30cm為一邊,另兩邊設(shè)為xcmycm;

130cm20cm對(duì)應(yīng),即==

解得x=75y=90;

75+9050,不可以.

230cm50cm對(duì)應(yīng),即==

解得x=12,y=36;

12+36=4850,可以.

330cm60cm對(duì)應(yīng),即==

解得x=10y=25;

10+2550,可以.

所以有兩種不同的截法.

故答案選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2
其中正確結(jié)論的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是(  )

A.AB=DC,AD=BCB.ABDCADBC

C.ABDC,AD=BCD.OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,線段OD=OC.

(1)求拋物線的解析式;
(2)拋物線上是否存在點(diǎn)M,使得△CDM是以CD為直角邊的直角三角形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)的移動(dòng)過程中,△PCF的周長是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 ABCD,BEFG

(1)如果∠1=53°,求∠2和∠3的度數(shù);

(2)本題隱含著一個(gè)規(guī)律,請(qǐng)你根據(jù)(1)的結(jié)果進(jìn)行歸納,如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角__________;

(3)利用(2)的結(jié)論解答:如果兩個(gè)角的兩邊分別平行,其中一個(gè)角比另一個(gè)角的 2倍小 30°,求這兩個(gè)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家旅行社為了吸引更多的顧客,分別提出了赴某地旅游的團(tuán)體優(yōu)惠方法,甲旅行社的優(yōu)惠方法是:買4張全票,其余人按半價(jià)優(yōu)惠;乙旅行社的優(yōu)惠方法是:一律按7折優(yōu)惠,已知兩家旅行社的原價(jià)均為每人100元;那么隨著團(tuán)體人數(shù)的變化,哪家旅行社的收費(fèi)更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)BBECD,垂足為E,連結(jié)AEFAE上一點(diǎn),且∠BFE=C

(1)ΔABFΔADE相似嗎?說說你的理由.

(2)AB=4,∠BAE=30°,求AE的長.

(3)(1)(2)的條件下,若AD=3,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與拓展應(yīng)用,
已知△ABC為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時(shí)針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:①BD=CF;②AC=CF+CD;

(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上且其他條件不變時(shí),結(jié)論AC=CF+CD是否成立?若不成立,請(qǐng)寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;

(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長線上且其他條件不變時(shí),補(bǔ)全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一慢車和一快車沿相同路線從A地到B地,所行的路程與時(shí)間的圖象如圖所示,試根據(jù)圖象,回答下列問題:

(1)慢車比快車早出發(fā)______小時(shí),快車追上慢車時(shí)行駛了_____千米,快車比慢車早______小時(shí)到達(dá)B地;

(2)求慢車、快車的速度;

(3)快車追上慢車需幾個(gè)小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案