【題目】在不透光的布袋里放入標有數(shù)字2,0,﹣3的三張的卡片(形狀與質(zhì)地完全相同).現(xiàn)在隨機地抽出兩張卡片,將兩個數(shù)字分別記作某個點的橫坐標與縱坐標.
(1)從布袋中同時抽取兩張卡片時組成的所有點中,直接寫出“點落入第四象限”概率是 ;
(2)如果抽出第一張卡片記錄數(shù)字后放回布袋,再從袋中抽取第二張卡片記錄數(shù)字后組成一個點,用畫樹狀圖或列表法,求出“點落在坐標軸上”的概率.
【答案】(1);(2).
【解析】
(1)列表表示出“不放回”的取兩次的所有結(jié)果,再根據(jù)概率公式求解可得;
(2)列表表示出“有放回”的取兩次的所有結(jié)果,再根據(jù)概率公式求解可得.
(1)列表如下:
2 | 0 | ﹣3 | |
2 | (0,2) | (﹣3,2) | |
0 | (2,0) | (﹣3,0) | |
﹣3 | (2,﹣3) | (0,﹣3) |
由表可知共有6種等可能結(jié)果,其中“點落入第四象限”的有1種結(jié)果,
所以“點落入第四象限”的概率為,
故答案為:;
(2)列表如下:
2 | 0 | ﹣3 | |
2 | (2,2) | (0,2) | (﹣3,2) |
0 | (2,0) | (0,0) | (﹣3,0) |
﹣3 | (2,﹣3) | (0,﹣3) | (﹣3,﹣3) |
由表可知,共有9種等可能結(jié)果,其中“點落在坐標軸上”的有5種結(jié)果,
所以“點落在坐標軸上”的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( 。
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx經(jīng)過點A(2,4)和點B(6,0).
(1)求這條拋物線所對應(yīng)的二次函數(shù)的解析式;
(2)直接寫出它的開口方向、頂點坐標;
(3)點(x1,y1),(x2,y2)均在此拋物線上,若x1>x2>4,則y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙十一購物節(jié)即將到來,某商場設(shè)計了兩種的促銷方案,并有以下兩種銷售量預(yù)期.預(yù)期一:第1步,銷售量擴大為原來的a倍.第2步,再擴大為第1步銷售量的b倍.預(yù)期二:第1步,銷售量擴大為原來的倍;第2步,再擴大為第1步銷售量的倍;其中a,b為不相等的正數(shù),請問兩種預(yù)期中,哪種銷售量更多?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況:
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關(guān)信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水,綠色環(huán)保”的意識,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭達到Ⅱ級標準?并估算這些Ⅱ級用水戶的總水費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,在L1上任取一點P,過點P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點M,N(點M在點N的左側(cè)).
(1)當L1與L2重合時,求點P的坐標;
(2)當點P與點B重合時,求此時L2的解析式;并直接寫出L1與L2中,y均隨x的增大而減小時的x的取值范圍;
(3)連接PM,PB,設(shè)點P(m,n),當n= m時,求△PMB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB上一點,AE=AD,且BF∥CD,AF⊥CE的延長線于F.連接DE交對角線AC于H.下列結(jié)論:①AC垂直平分ED;②AE=BE;③CE=2BF;④BE=2EF.其中結(jié)論正確的是_______.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com