【題目】(2016貴州省畢節(jié)市第6題)到三角形三個頂點(diǎn)的距離都相等的點(diǎn)是這個三角形的( )
A.三條高的交點(diǎn) B. 三條角平分線的交點(diǎn)
C.三條中線的交點(diǎn) D. 三條邊的垂直平分線的交點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中, AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為: .
(2)若△DEF三邊的長分別為、、,請?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,請利用第2小題解題方法求六邊形花壇ABCDEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省邵陽市第12題)學(xué)校射擊隊(duì)計(jì)劃從甲、乙兩人中選拔一人參加運(yùn)動會射擊比賽,在選拔過程中,每人射擊10次,計(jì)算他們的平均成績及方差如下表:
選手 | 甲 | 乙 |
平均數(shù)(環(huán)) | 9.5 | 9.5 |
方差 | 0.035 | 0.015 |
請你根據(jù)上表中的數(shù)據(jù)選一人參加比賽,最適合的人選是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示形狀的甲、乙兩個框,都能框住某月日歷表中的四個數(shù),設(shè)被框住的四個數(shù)中:甲框住的最小的數(shù)為a;乙框住的最小的數(shù)為b.
(1)用a和b分別表示甲和乙框住的四個數(shù)的和;
(2)若a=b,求甲框住的四個數(shù)的和比乙框住的四個數(shù)的和大多少?
(3)甲框住的四個數(shù)的和能是48嗎?乙呢?如能,求出a、b的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn)90°,得到△A′B′C,若∠B=60°,則∠1的度數(shù)是( )
A.15° B.25° C.10° D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CA=12cm,BC=12cm;動點(diǎn)P從點(diǎn)C開始沿CA以2cm/s的速度向點(diǎn)A移動,動點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動,動點(diǎn)R從點(diǎn)B開始沿BC以 2cm/s的速度向點(diǎn)C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.
(1)∠CAB的度數(shù)是 ;
(2)以CB為直徑的⊙O與AB交于點(diǎn)M,當(dāng)t為何值時,PM與⊙O相切?
(3)寫出△PQR的面積S隨動點(diǎn)移動時間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,動點(diǎn)P、Q同時從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動,設(shè)運(yùn)動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間的函數(shù)關(guān)系可用圖象表示為 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com