【題目】如圖,函數(shù),,,的圖象圍成陰影部分的面積是___________.
【答案】
【解析】
連接AF、BG,根據(jù)題意得陰影部分的面積與平行四邊形AFGB的面積相等,據(jù)此求解即可.
設直線與兩雙曲線和軸、軸分別相交于B、A、C、H,直線與兩雙曲線和軸分別相交于G、F、E,連接AF、BG、CE,過A點作軸的垂線與過B點作軸的垂線相交于點D,如圖,
根據(jù)題意:雙曲線向左平移4個單位,再向下平移4個單位得到雙曲線,
∴BD=AD=4,
又∠D=,
∴,
令,則,令,則,,
令,則,,
∴點C、H、E的坐標分別為(0,),(0,),(,0),
∴OC=OH=OE=,
又∠COE=∠COH=,
∴,∠HCE=,即CE⊥AB,
∵直線和直線平行,即AB∥FG,
∴.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標;
(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標;
(4)在平面內(nèi),是否存在點M使點A、B、C、M構成平行四邊形,如果存在,直接寫出M坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E是正方形ABCD邊CD上任意點,以DE為邊作正方形DEFG,連接BF.點M是線段BF中點,射線EM與BC交于點H,連接CM.
(1)請直接寫出CM和EM的數(shù)量關系和位置關系:__________;
(2)把圖1中的正方形DEFG繞點D順時針旋轉90°,此時點E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結論是否成立,請說明理由.
(3)若DG=,AB=4.
①把圖1中的正方形DEFG繞點D順時針旋轉45°,此時點F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計算EM的長度;
②若把圖1中的正方形DEFG繞點D順時針旋轉一周,請直接寫出EM的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是直徑,弦BC于點F,且交于點E,且∠AEC=∠ODB.
(1)判斷直線和的位置關系,并給出證明;
(2)當,時,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx +3與x軸的交點為A和B,其中點A(-1,0),且點D(2,3)在該拋物線上.
(1)求該拋物線所對應的函數(shù)解析式;
(2)點P是線段AB上的動點(點P不與點A,B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ,DQ,記點P的橫坐標為t.
①若時,求△面積的最大值;
②若△是以Q為直角頂點的直角三角形時,求所有滿足條件的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某花店用3600元按批發(fā)價購買了一批花卉.若將批發(fā)價降低10%,則可以多購買該花卉20盆.市場調查反映,該花卉每盆售價25元時,每天可賣出25盆.若調整價格,每盆花卉每漲價1元,每天要少賣出1盆.
(1)該花卉每盆批發(fā)價是多少元?
(2)若每天所得的銷售利潤為200元時,且銷量盡可能大,該花卉每盆售價是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價不超過5元,問該花卉一天最大的銷售利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長AB=xm,菜園的面積為Sm2,且AB>AD.
(1)求S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.
(2)若要圍建的菜園為100m2時,求該萊園的長.
(3)當該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學生人數(shù)是多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).
(4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com